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Marian Smoluchowski Institute of Physics, Jagiellonian University, ulica Reymonta 4, 30-059
Kraków, Poland

Received 27 October 2006, in final form 14 November 2006
Published 30 May 2007
Online at stacks.iop.org/JPhysCM/19/255212

Abstract
We overview the EDABI method developed recently combining the exact
diagonalization and ab initio aspects of electron states in correlated systems
and apply it to nanoscopic systems. In particular, we discuss the localization–
delocalization transition for the electrons that corresponds to the Mott–Hubbard
transition in bulk systems. We show that the statistical distribution function
for electrons in a nanochain evolves from Fermi–Dirac-like to Luttinger-
liquid-like with the increasing interatomic distance. The concept of Hubbard
subbands is introduced to nanoclusters, and corresponds to the HOMO–LUMO
splitting in the molecular and organic solid states. Also, the nanochains exhibit
magnetic splitting (Slater-like), even without the symmetry breaking, since the
spin–spin correlations extend over the whole system. Thus, the correlated
nanoscopic systems exhibit unique and universal features, which differ from
those of molecular and infinite systems. These features define unique properties
reflecting ‘the Mott physics’ on the nanoscale. We also employ the EDABI
method for the transport properties in nanoscopic systems. For example, we
show that the particle–hole symmetry is broken when the tunnelling conduction
through the H2 molecule is calculated.

(Some figures in this article are in colour only in the electronic version)

1. Introduction

The studies of nanosystems are becoming increasingly important in view of their application
in quantum nanoelectronics and related fields of research. Of particular importance are
their quantum electronic properties, since they determine their behaviour as concrete devices:
quantum nanowire connectors and semiconducting elements, single-electron transistors, spin
valves etc. Under these circumstances, solid-state and molecular nanophysics is developing
very rapidly to provide proper quantitative (and qualitative) characteristics of their static,
transport, and optical properties [1].
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Independently of the applications, the research in nanophysics is important for its own
fundamental sake. Namely, the nanosystems are finite systems and therefore most of the
limiting situations considered in the condensed matter physics and involving the limit for
the number of atoms N → ∞ are simply inapplicable. Furthermore, the role of boundary
conditions is very nontrivial, as they should reflect the system actual configuration. Also,
and probably most importantly, the question of electron–electron interactions, particularly
for extended states, should be taken into account on equal footing with the single-electron
aspects of their quantum states, since the screening processes are very often highly ineffective.
Nevertheless, given the circumstances, the role of physics is to single out universal properties
of the systems such as nanowires, clusters, quantum dots, etc. Such research also involves
determining the conditions under which the bulk-solid concepts are applicable, since then the
description can be simplified remarkably.

In this paper we present our recent and earlier results concerning the studies of
nanosystems containing as an intrinsic property the electron correlation effects induced by the
Coulomb interactions, within the devised EDABI method combining both exact diagonalization
and ab initio aspects of electronic states, as well as their transport properties [2]. This approach
allows for discussion of the evolution of the physical properties of e.g. nanowires or clusters,
both as a function of their interatomic distance as well as to determine the values of microscopic
single-particle and interaction parameters. The visualization of the properties as a function of
interatomic distance is particularly important for nanometre size systems, as they are studied
customarily by placing them on a substrate with the lattice parameter, which differs from their
equilibrium interatomic distance (sometimes the substrate even stabilizes them).

Our most interesting results can be summarized as follows. First, we show how the
system properties evolve from the Fermi-liquid-like to the atomic-like states for nanowires
containing up to N = 16 simple atoms, passing through the Luttinger-liquid-like state, with
the increasing interatomic distance R. This evolution is determined by calculating directly the
system statistical distribution function nkσ of electrons and their dynamical spectral function.
Finite-size scaling properties are introduced to determine the Mott critical interatomic distance
(the Mott criterion) for the transition from the delocalized to the localized states. Second, we
show that the electronic states in nanosystems of N ∼ 10 atoms exhibit a magnetic splitting
reminiscent of the Slater splitting in antiferromagnetic metallic systems [3]. This type of
symmetry change is associated with the breakdown of the discrete translational symmetry,
as the antiferromagnetism sets in. In the case of nanosystems such symmetry breakdown is
not required. It turns out that the splitting appears if the spin–spin correlation length is of the
system size. The splitting should be detected e.g. in nanowires containing strongly correlated
electrons in a half-filled valence band configuration. Third, the question arises of whether with
the increasing interatomic distance one should not observe the Hubbard split-band structure of
nanowire and molecular (e.g. HN or LiN ) clusters. We show that nanocluster levels group into
multiple Hubbard subbands (in bulk systems such a grouping is termed HOMO and LUMO
structures). Finally, in the case of a quantum dot composed of e.g. an H2 molecule attached
to the semimacroscopic electrodes we show that the electron–hole symmetry in the tunnelling
transport through the molecule is not preserved and is due to the difference in electronic binding
energy of H+

2 and H−
2 states. Such result is not obtained if a parametrized model of a quantum

dot properties is used [4].
The structure of this paper is as follows. In the next section we overview the EDABI

method [3–7], as well as discussing some of the many-electron general properties adopted for
the analysis carried out in the next sections. We also compare the method with the configuration
interaction (CI) approach used in quantum chemistry. In section 3 we discuss atomic systems
and HN nanoclusters, whereas in section 4 the results for nanochains containing up to N = 16
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atoms are elaborated in detail. In section 5 we employ the EDABI method to calculate the
tunnelling conductivity through the H2 molecule and the Drude weight for the nanochains. We
also discuss the role of boundary conditions there.

The present method and the research grew out of our earlier work on the thermodynamics
of the Mott–Hubbard transition in correlated systems [8]. There, the principal question was
whether the metallic and magnetic insulating states can be regarded as separate phases in the
thermodynamic sense. The affirmative answer to the above question provided a partial answer
to Sir Nevill Mott’s question: What is a metal? In this paper the corresponding principal
question is how small can a piece of metal be? In other words, can a nanochain composed
of e.g. N = 10 Cu atoms be regarded already as a metallic system and in what sense? The
answer is ‘yes’, but above a critical value of voltage applied to the chain and for not too large
interatomic distance.

2. Exact diagonalization combined with an ab initio approach

2.1. General features

The second-quantization language is used when we have an interaction between the quantum
physical fields representing the classical particles composing the system. The approach
is usually formulated in the occupation-number representation, expressing the possible
occupations of a given (complete in the quantum mechanical sense) set of single-particle states,
between which there are transitions induced by their mutual interaction. Explicitly, the single-
particle basis {�i(r)} defines the field operator �̂(r), in terms of which the many-particle
Hamiltonian (or Lagrangian) is defined. In the nonrelativistic case, the Hamiltonian is defined
as [9]

Ĥ =
∫

d3r�̂†(r)H1(r)�̂(r) + 1
2

∫
d3r d3r ′�̂†(r)�̂†(r′)V (r − r′)�̂(r′)�̂(r) ≡ T̂ + V̂

(1)

with

�̂(r) =
∑

i

�i (r)ai . (2)

H1(r) represents the Hamiltonian for a single particle in the assembly of N indistinguishable
particles, V (r− r′) is the interaction between a single pair of particles, and ai is the annihilation
operator of the particle in the single-particle state �i (r). One should underline that the basis
{�i(r)} should be complete, but otherwise arbitrary (it does not have to be orthogonal [10]).

The complete set of {�i(r)} in (2) is in practical calculations not infinite, so we have
to resort to a finite subset of [�i(r)] when performing explicit computations, i.e. constructing
many-particle models. In this manner, we make the basis incomplete in the quantum mechanical
sense, even though the model may be well justified on physical grounds as it may contain
principal dynamic processes involved. In the first step, we diagonalize H in the Fock space
for given trial basis [�i(r)]. Then, as a next step, one can optimize the finite (incomplete)
subset taken by e.g. minimizing the ground-state energy EG ≡ 〈�0|Ĥ |�0〉 (where |�0〉 is
the ground-state wavefunction in the Fock-space representation), with respect to the selected
subset [�i(r)]. Such a procedure is highly nontrivial, since the determination of EG =
EG{�i(r),∇�i (r)} requires first the diagonalization of the parametrized Hamiltonian (1) in the
Fock space1 (with the microscopic parameters containing both [�i(r)] and [∇�i(r)]) and, only
1 One could obtain a complete solution of (1) directly by determining the field operator from the Heisenberg equation
of motion for �̂ or for the Green function related to it. However, this is usually not feasible if one has to go beyond the
Hartree–Fock approximation or the interaction part must be treated nonperturbatively.
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after that, setting up an effective wave equation for each �i (r), with EG treated as a functional
of the trial basis [�i (r)]. The resultant renormalized or self-adjusted wave equation (SWE)
should have a universal meaning to the same degree, as has the starting Hamiltonian (1) in that
incomplete basis. We call this method of approach EDABI (a combined exact diagonalization–
ab initio approach). In this manner, only then can the approach to the interacting system be
regarded as completed, particularly in the situation when the interparticle interaction cannot be
regarded as weak, e.g. for correlated systems. Obviously, when the correlations are weak, the
approach reduces to the Hartree–Fock approximation. This approach has been implemented
so far for some exactly soluble models of correlated electrons and for nanochains [11, 12]2

containing up to N = 16 atoms used as a trial basis, with adjustable Slater or Gaussian
orbitals [4]. Here we present a rather extensive analysis of our method, applicable to both
fermion and boson systems, as well as constructing explicitly the multiparticle wavefunction in
the simplest atomic situations. The last aspect of the work may be applied to both atomic and
molecular systems providing e.g. a systematic approximation scheme in the quantum chemical
calculations. In particular, the explicit many-particle wavefunction construction allows for
a comparison with the method of the multiconfigurational interaction (MCI) approach [14]
utilized in quantum chemistry. Simply put, we develop a relatively straightforward (but not
simple!) workable scheme, which is applicable to both many-electron atoms, molecules and
molecular ions, as well as to clusters and nanoscopic systems.

One can summarize important features of our approach as follows. First, the interaction
and the single-particle terms in the many-particle Hamiltonian are treated on an equal footing.
Second, the single-particle wavefunction appears in a nonexplicit form in the expression for
the microscopic parameters and is determined explicitly from the variational principle for the
ground-state energy EG = 〈T̂ 〉 + 〈V̂ 〉 ≡ EG{�i(r)}, which leads to the self-adjusted wave
equation3. Third, the explicit construction of the multiparticle wavefunction �(r1, · · · , rN)

in terms of the field operators4 provides a way of systematizing the approximation schemes.
Fourth, one does not count twice the interaction, which should be taken with care in e.g. in
the LDA + U method. All of these features are particularly important for the systems for
which the interaction cannot be treated as a perturbation. Among such systems are cluster and
various correlated Fermi and Bose systems, particularly of low dimensionality. Probably the
most important formal feature of the present approach is that that by reversing the order of
solving the problem (treating first the interaction in the Fock space and only then determining
the single-particle wavefunction in the Hilbert space), we complete the treatment of strongly
correlated systems. Unfortunately, our approach is executable so far only in a limited number
of situations. As a side result we also obtain the values of microscopic parameters for the
parametrized models5. In effect, the physical properties can be analysed as a function of
interatomic distance, not only as a function of model parameters, and thus provide us with
the global minimum for system at hand and for given interatomic distance.

The self-adjusted wave equation (SWE), as we shall see, is of nonlocal and nonlinear
nature. Hence, it is very difficult to solve it directly. Nonetheless, the main purpose of the

2 The method presented evolved from an approximate treatment of an extended (one-band) system of correlated
electrons discussed by Spałek and Wójcik [13]. This method has also been applied to correlated systems selecting
the basis of a single Gaussian instead; see Acquarone et al [13]; cf also Fortunelli and Painelli [13].
3 The method is essentially the same as the variational principle introduced originally by Schrödinger [15]. The
Schrödinger equation is obtained by minimizing the expression for the system energy, 〈�|H1|�〉, under the condition
〈�|�〉 = 1. Here, our functional EG{�i (r)} is much more complicated due to the many-particle nature of the system.
4 For a lucid introduction to the relation between Fock and Hilbert-space representations of multiparticle states see
e.g. [16]; cf also [9]
5 The parametrized models play a prominent role in the theory of correlated fermionic and bosonic systems, for which
exact solutions are avaible in some cases, cf [17]

4



J. Phys.: Condens. Matter 19 (2007) 255212 J Spałek et al

present paper is to present the solution in the closed variational form and illustrate its character
in simple situations, ranging from the atomic physics to nanophysics.

2.2. Renormalized (self-adjusted) wave equation (SWE)

We start with Hamiltonian (1) and write it down in the explicit-spin basis, in which the spin is
regarded as an additional coordinate, i.e. in the form

Ĥ =
∑

σ

∫
d3r�̂†

σ (r)H1(r)�̂σ (r)

+ 1
2

∑
σ1σ2

∫ ∫
d3r1d3r2�̂

†
σ1

(r1)�̂
†
σ2

(r2)V (r1 − r2)�̂σ2(r2)�̂σ1(r1). (3)

We define the spin-dependent field operator as

�̂σ (r) =
M∑

i=1

wi (r)χσ aiσ , (4)

where {wi (r)} is a complete single-particle basis with the set of quantum numbers denoted
by i . Note that we regard the Hamiltonians H1(r) and V (r1 − r2) as spin independent (it
is straightforward to generalize the formalism to the case with spin-dependent Hamiltonian,
i.e. when magnetic field or spin–orbit interaction are included). Substituting (4) into (3) we
obtain the usual form of the Hamiltonian

H =
∑
i jσ

ti j a
†
iσ a jσ + 1

2

∑
i jklσ1σ2

Vi jkla
†
iσ1

a†
jσ2

alσ2 akσ1 , (5)

with the microscopic parameters defined by

ti j ≡ 〈wi |H1|w j〉 ≡
∫

d3rw�
i (r)H1(r)w j (r), (6)

and

Vi jkl ≡ 〈wiw j |V |wkwl〉 ≡
∫

d3r1d2d3r2w
�
i (r1)w

�
j (r2)V (r1 − r2)wk(r1)wl(r2). (7)

In the standard form (5) of the many-particle Hamiltonian the single-and many-particle aspects
of the problem are separated in the sense that the calculation of the hopping parameters ti j

and their corresponding interactions Vi jkl , both containing the single-particle wavefunctions
{wi (r)}, is separated from the diagonalization procedure of the Hamiltonian in the Fock space6.
The latter procedure is dependent only on the nature of the commutation relation between
the annihilation (aiσ ) and creation (a†

jσ ) operators. Thus this two-step procedure can be seen
explicitly when we calculate the system ground-state energy

EG ≡ 〈H 〉 =
∑
i jσ

ti j〈a†
iσ a jσ 〉 + 1

2

∑
i jklσ1σ2

Vi jkl〈a†
iσ1

a†
jσ2

alσ2 akσ1 〉, (8)

where the averaging 〈· · ·〉 takes place over all accessible occupancies of given single-particle
states |iσ1〉, | jσ2〉, |kσ1〉, and |lσ2〉. Obviously, if we want to consider all occupancies (a grand
canonical ensemble), we diagonalize H − μN , where N is the total number of particles, and
only a posteriori impose the conditions that N = ∑

iσ 〈niσ 〉, with niσ ≡ a†
iσ aiσ .

So far, the approach is standard [9, 10]. We have proposed [2, 11–13] to close the solution
(i.e. the complete calculation of e.g. EG) with the determination of the single-particle basis

6 Note that the parameters ti j and Vijkl contain the functions {wi (r)} under the integral expressions (6) and (7), so EG

is indeed a functional of {wi (r)} and {∇wi(r)}.
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{wi (r)} by treating the expression (8) as a functional of the set of functions {wi (r)} and their
gradients. In such a situation the renormalized (self-adjusted) wave equation is determined
from the Euler equation for the functional

E{wi (r)} ≡ EG{wi(r)} − μN −
∑
i� j

λi j

(∫
d3rw�

i (r)w j (r) − δi j

)
, (9)

where

N =
∑

σ

∫
d3(r)〈�̂†

σ (r)�̂σ (r)〉 =
∑
i jσ

∫
d3rw�

i (r)w j (r)〈a†
iσ a jσ 〉,

N is the number of particles in the system, and λi j are the Lagrange multipliers, when the
single-particle basis is nonorthonormal.

The general form of this equation in the stationary case and in the grand canonical-
ensemble formalism is

δ(EG − μN)

δw�
i (r)

− ∇ δ(EG − μN)

δ(∇w�
i (r))

−
∑
i� j

λi jw j(r) = 0. (10)

We will make a fundamental postulate concerning this equation: as this equation does
not contain explicitly the (anti)commutation relations between the creation and annihilation
operators, it is equally valid for both fermions and bosons and determines a rigorous, within
the class of states included in the definition of �̂(r), wave equation for a single-particle
wavefunction in the ground state, in the milieu of the remaining (N −1) particles. Additionally,
as is implicit in the treatment above, we have defined one global spin-quantization axis for all
single-particle states used to define �̂σ (r). In some spin noncollinear systems this is insufficient
and will require a more refined treatment. Also, if we use the particle conserving approach to
calculate EG, then we put μ ≡ 0 in (10). Likewise, for the orthonormal basis {wi (r)} used
to define �̂σ (r) in (4), one puts λi j ≡ 0. In the latter case the system (10) represents a set of
Euler equations for renormalized Wannier functions. In what follows we discuss examples of
application of this equation to fermion systems (it can be applied to Bose systems in the same
manner). But first, we define the renormalized many-particle wavefunction as complementing
the above renormalized single-particle states {wi(r)} and then discuss the differences with the
MCI approach.

2.3. Multiparticle wavefunction from the second-quantization approach

The general N-particle state |�N 〉 in the Fock space can be defined through the corresponding
N-particle wavefunction �α(r1, . . . , rN) in the Hilbert space in the following manner [16]7:

|�N 〉 = 1√
N !

∫
d3r1 . . . rN�N (r1, . . . , rN)�̂†(r1) . . . �̂†(rN)|0〉, (11)

where |0〉 is the vacuum state. One can reverse this relation and a simple algebra yields the
following expression for the wavefunction �α(r1, . . . , rN) in terms of |�N 〉:

�α(r1, . . . , rN) = 1√
N ! 〈0|�̂(r1) . . . �̂(rN)|�N 〉. (12)

In other words, to obtain the wavefunction in the coordinate representation, we not only
annihilate N particles from the state |�N 〉, but also project out the thus obtained result onto
the Fock vacuum state and normalize it by the factor (N !)−1/2. Usually, the formula (12) is

7 The relativistic and nonrelativistic field quantizations for an arbitrary single-particle basis were compared first in [9].
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Figure 1. Flow-chart describing the scheme of the EDABI method. For details see the main
text. When selecting the Gaussian starting single-particle set, the topmost block should be
disregarded.

not used as we proceed from first to second quantization. Now, the crucial point is based on
the observation that if we substitute in the field operator �̂(r) the renormalized wavefunctions
obtained from equation (10), then we should obtain the renormalized field operator and, as a
consequence, the renormalized multiparticle wavefunction �α(r1, . . . , rN) from relation (12).
This last step of inserting the renormalized field operator completes the procedure of a formal
treatment of the many-particle system, which avoids writing down explicitly the N-particle
Schrödinger equation. The whole approach is schematically represented in figure 1. This
scheme provides an exact renormalized single-particle wavefunction from equation (10) and
the exact N-particle wavefunction provided we can diagonalize the second-quantized model
Hamiltonian (5) for the problem at hand. We shall see next that we can also approach the true
solution step by step.

2.4. Finite-basis approximation for the field operator: difference with the multiconfiguration
interaction (MCI) approach

The field operator �̂(r) defined in terms of the sum over a complete basis {wi(r)} contains
an infinite number of single-particle states. We assume that, in general, we represent the field
operator by M wavefunctions {wi (r)}. Explicitly,

�̂(r) ≡
∞∑

i=1

wi (r)ai �
M∑

i=1

wi (r)ai , (13)

with i representing a complete set of quantum numbers and M being a finite number. This
approximation represents one of the most fundamental features of constructing theoretical
models. The neglected states usually represent highly excited (and thus negligible) states of
the system. We can then write the approximate N-particle wavefunction (N � M) in the
following manner:

�α(r1, . . . , rn) = 1√
N !

M∑
i1,...,iN =1

〈0|aiN . . . ai1 |�N 〉wi1(r1) . . . wiN (rN). (14)

Recognizing that within the occupation-number space spanned on the states {|ik〉}k=1...M we

7
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have the N-particle state in the Fock space of the form

|�N 〉 = 1√
N !

M∑
j1,..., jN =1

C j1... jN a†
j1

. . . a†
jN

|0〉, (15)

where C j1... jN represents the coefficients of the expansion to be determined from a
diagonalization procedure. Substituting (15) into (14) we obtain

�α(r1, . . . , rN)

= 1

N !
M∑

i1,...,iN =1

M∑
j1,..., jN=1

〈0|ai1 . . . aiN a†
j1

. . . a†
jN

|0〉C j1... jN wi1(r1) . . . wiN (rN). (16)

The expression provides N ! nonzero terms each equal to (−1)P , where P represents the sign of
the permutation of quantum numbers ( j1 . . . jN) with respect to a selected collection (i1 . . . iN ).
In other words, we can write that

�α(r1, . . . , rN) = 1

N !
M∑

i1,...,iN =1

Ci1...iN (A, S)[wi1(r1) . . .wiN (rN)]. (17)

We have the same expansion coefficients for both the wavefunction in the Fock space
|�N 〉 and that in the Hilbert space �α(r1, . . . , rN)! Therefore, the above expression
represents the multiconfigurational-interaction wavefunction of N particles distributed among
M states with the corresponding weights Ci1...iN for each configuration, and (A, S) represents
respectively the antisymmetrization (Slater determinant) or the symmetrization (simple product
wi1(r1) . . . wiN (rN)) for the fermions and bosons, respectively. Whereas the MCI used in
quantum chemistry [18] is based on variational optimizations of both the coefficients Ci1...iN

and the basis {wi(r)}, here the coefficients C are determined from diagonalization in the Fock
space, spanned on M states in the Hilbert space and determined from (10). The presence of
SWE (10) thus supplements the usual MCI approach.

Summarizing, the differences between the EDABI and the MCI methods, both of which
belong to the class of multi-determinant expansion of the N-particle wavefunction, are
threefold.

(i) Historical. MCI evolved from variational methods of quantum physics and chemistry to
include the electronic correlations and hence to obtain a lower value of EG by starting
from a many-particle Schrödinger equation. EDABI represents a procedure of calculating
the single-particle wavefunction starting from parametrized models of strongly correlated
electrons.

(ii) Technical. In MCI, we optimize simultaneously the coefficient expressing the weights
of different determinants (representing different micro-configurations), as well as
the parameters of the trial single-particle basis. In EDABI, we diagonalize the
Hamiltonian expressed in the Fock space (with the help of either analytic or numerical
methods), combined with a simultaneous optimization of the orbital size in the resultant
ground state.

(iii) Essential. In the case of analytically soluble models, EDABI leads formally to the explicit
form of the renormalized wave equation, which represents a nonlinear Schrödinger
equation of nonlocal type. This circumstance opens up a new direction of studies in
mathematical quantum physics. Additionally, it allows for a direct determination of
dynamical correlation functions, transport properties, etc. in the convenient, second-
quantization, language.

8
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2.5. An interpretation of the approach: rationale behind the self-adjusted wavefunction in the
many-body system

Usually, the choice of starting single-particle basis {wi(r)} is dictated by the physics of the
system at hand. Since the creation and annihilation processes are characterized only by the
quantum numbers i of these starting single-particle states, one can say that they represent a
particle language characterizing transitions between these states. The ground-state energy
obtained from the diagonalization in the Fock space defines resultant single-particle states,
which can be called the self-adjusted states, after the optimization of the single-particle
wavefunction has been carried out via solving the self-adjusted wave equation (SWE)8,9 or
its variational version. In other words, we allow the initial particle wavefunction wi (r) to
adjust to the correlated state. In such a scheme the particle and the wave aspects of the
single-particle states are intertwined formally, illustrating among other things the particle–wave
complementarity, this time in a formal manner. For example, the Born probability density
of finding a particle is taken here as

∑
σ 〈�̂†

σ (r)�̂σ (r)〉/N . In what follows we essentially
illustrate the method on concrete examples and apply it to nano-systems.

One may ask the basic question: why do we reverse the usual sequence of solving the
single-particle wave equation first, and only then constructing the field operators in the second-
quantization Hamiltonian (or Lagrangian), by solving the many-particle Hamiltonian first and
only then readjusting the orbitals? The reason for this is as follows. As said above, in many
cases (e.g. for correlated and/or low-dimensional fermionic systems) we encounter the situation
when the interaction cannot be regarded as a perturbation and therefore should be treated at
least on equal footing with the single-particle aspect of the problem. This is because, in
general, the interaction may change the class of the stationary-state wavefunction. Such a
situation is beautifully illustrated in the example of the metal–insulator phase transition of the
Mott–Hubbard type, at which the metallic state represented by the Bloch-type wavefunctions
switches to the localized (Wannier-type) states even though those representations are regarded
as equivalent from a single-particle point of view. In other words, the interaction determines the
particle wavefunction. Furthermore, the electron as a separate entity (lepton) is preserved even
in the highly correlated milieu of other particles and, therefore, constructing the self-consistent
wave equation (SWE) has a sense as it provides its wavefunction adjusted to the environment.

2.6. Single-particle basis selection and the particle-density space profiles

As we have already mentioned, the selected single-particle basis wi(r) ≡ {�i (r)} is determined
from the variational principle for EG{�i(r),∇�i (r)}, and it should satisfy the self-adjusted
wave equation. Here we solve this equation variationally and take a trial basis {�i (α; r)}
dependent on a finite number of parameters α ≡ {αp}p=1,...,K . Moreover, if the basis is
orthonormal, then the equation can be simplified to the form

δ(EG − μN)

δα
= 0. (18)

8 The notion of the self-adjusted state differs from the concept of quasiparticle state invoked by Landau in his theory
of Fermi liquids. The Landau quasiparticle results from an adiabatic switching of the interaction and therefore the
quasiparticle states are in one-to-one correspondence with the states of an ideal quantum gas forming the liquid.
Here, the self-adjusted states can be either localized or itinerant, as the interparticle interaction cannot be treated
perturbationally. The statistical distribution of correlated states can differ from the Fermi–Dirac distribution (cf [8]),
as quasimomentum may not be a good quantum number.
9 In the context of the orbit-size relaxation one can talk about wavefunction renormalization. The statistical
distribution is determined by dynamics in the Fock space.

9
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In most applications we select adjustable atomic orbitals as the basic functions {�i(α; r)},
which need to be orthonormalized with a special kind of orthonormalization procedure.
Additionally, if the number of particles N is conserved by the Hamiltonian H then the term
μN in (18) is absent, and the equation reduces to the ordinary energy minimization EG ≡ 〈H 〉
with respect to the variation parameters {αp}.

2.7. A remainder: Wannier basis for an extended periodic system

Let us consider the multi-particle systems for a single-band case for atoms located at
positions {Ri} and the basic wavefunctions {�i(α; r)} of the form {�(α; r − Ri )}. The
orthonormalization procedure for periodic structures can be obtained by starting with the
expression for the Bloch function

�q(α; r) = Nq

N∑
j=1

eiq·R j � j (α; r), (19)

where Nq is a normalization coefficient. The normalization condition then takes the form

〈�q(α; r)|�q′(α; r)〉 = N∗
q Nq′

∑
jl

e−iq·R j +iq′·Rl 〈� j (α; r)|�l(α; r)〉

= N∗
q Nq′

∑
j

ei(q′−q)·R j
∑

l

eiq′·(Rl −R j )Sl j ≡ δqq′, (20)

where Sl j is an overlap integral. The last sum does not depend on the relative distance, hence

〈�q(α; r)|�q′(α; r)〉 = N∗
q Nq′ Nδqq′

∑
l

eiq′·(Rl −R j )Sl j ≡ δqq′, (21)

and thus

|Nq| =
(

N
∑

l

eiq·(Rl−R j )Sl j

)−1/2

. (22)

As we can see, the above wavefunctions {�q(α; r)} are the Bloch functions, from which
we can construct the Wannier functions {wl(α; r)} in the usual manner, i.e.

wl(α; r) = 1√
N

∑
q

e−iq·Rl �q(α; r) = 1√
N

∑
q

e−iq·Rl Nq

∑
j

eiq·R j � j (α; r)

=
∑

j

� j(α; r)

(
1√
N

∑
q

Nqe−iq·(Rl−R j )

)
≡

∑
j

βl j � j(α; r), (23)

where

βl j = 1

N

∑
q

e−iq·(Rl −R j )√∑
m e−iq·(Rn−Rm )Smn

. (24)

The orthonormal Wannier set {wl(α; r)} obtained with the help of the above procedure is
thus a set of linear combinations of the originally nonorthonormal atomic orbitals. Moreover,
the coefficients {βl j } depend only on Rl − R j and satisfy the relation βl j = β∗

jl .

2.8. Wannier functions for finite systems

The above procedure can be applied with modifications to finite cluster systems. We start from
the decomposition

wl(α; r) =
M∑

j=1

βl j � j(α; r), (25)

10



J. Phys.: Condens. Matter 19 (2007) 255212 J Spałek et al

with the normalization condition in the form

〈wl(α; r)|wl′ (α; r)〉 =
∑

jk

β∗
l jβl′k〈� j (α; r)|�k(α; r)〉 =

∑
jk

β∗
l jβl′k Sk j ≡ δll′ . (26)

In the matrix language, this condition can be rewritten as

βSβ+ = 1, (27)

or, equivalently, as

β+β = S−1. (28)

We choose the β matrix in the form β = β+; in effect, this choice leads to the relation

β = S−1/2. (29)

The above method is known as the Löwdin method of determining the orthonormal basis,
and for the overlap integral matrix becomes unity if elements of the system are separated from
each other at large distances. So, the β matrix then can be written down as

β = 1 +
∞∑

n=1

(−1)nn

2nn!
n∏

k=1

(2k − 1) = 1 +
∞∑

n=1

n
n∏

k=1

(
1

2k
− 1

)
, (30)

where  = S − 1. However, the above series does not converge in the tight binding approach
and it has to be modified to the form

β =
(

(1 + C)S

1 + C

)−1/2

, (31)

and thus

β = (1 + C)−1/2

[
1 +

∞∑
n=1

n
C

n∏
k=1

(
1

2k
− 1

)]
, (32)

where C ≡ S/(1 + C) − 1. The parameter C allows us to manipulate convergence of the
series, for it appears in the convergence condition

‖C‖ < 1, (33)

that needs to be satisfied for any kind of ‖ · ‖ metric. Therefore, we choose the metric

‖C‖∞ ≡ max
i j

{∣∣∣∣ Si j

1 + C
− δi j

∣∣∣∣
}

= max

{
C

1 + C
; maxi �= j |Si j |

1 + C

}
. (34)

As we can see, the metric satisfies the condition when the parameter C is equal to

C = max
i �= j

|Si j |. (35)

The method we have just shown can be applied to both single-band and to multiple-band
systems. The method can also be applied to disordered systems. In what follows we will select
as a starting atomic basis {�i(r)} either a Slater or Gaussian (STO-3G) basis when constructing
the Wannier function, and subsequently optimize their size in the correlated state.

2.9. Particle density profiles in space

In the previous section we dealt with the N-particle wavefunction �(r1, . . . , rN ). Here we
show how it can be applied to the evaluation of particle density n(r). We start with the usual
definition of the probability density for a single particle:

ρ(rN ) =
∫

d3r1 . . . rN−1|�(r1, . . . , rN )|2. (36)

11



J. Phys.: Condens. Matter 19 (2007) 255212 J Spałek et al

We utilize now expression (4) for the wavefunction we obtained in section 2. In effect,

|�(r1, . . . , rN )|2 = 1

N ! 〈�N |�̂+(rN ) . . . �̂+(r1)|0〉〈0|�̂(r1) . . . �̂(rN )|�N 〉. (37)

We have the particle-number conservation and hence we can rewrite (37) as

|�(r1, . . . , rN )|2 = 1

N ! 〈�N |�̂+(rN ) . . . �̂+(r1)�̂(r1) . . . �̂(rN )|�N 〉. (38)

This is because we can insert
∑

N |N〉〈N | instead of |0〉〈0|. The expression for the field
operator �̂(r), defined with the help of the orthonormal basis {wi(r)} in (4), leads to the
following relation:

�̂+(r)�̂(r) =
∑

i1σ1i2σ2

w∗
i1
(r)χ∗

σ1
wi2(r)χσ2 a+

i1σ1
ai2σ2 , (39)

and thus

�̂+(r)�̂(r) =
∑
i1i2σ

w∗
i1
(r)wi2(r)a

+
i1σ

ai2σ . (40)

Therefore, we can apply the above relation to the expression for ρ(rN ). Namely, by noting
that

ρ(rN ) =
∫

d3r2 . . . rN−1

(∫
d3r1|�(r1, . . . , rN )|2

)
, (41)

we can obtain the following series of helpful identities:∫
d3r1|�(r1, . . . , rN )|2

= 1

N !
∫

d3r1〈�N |�̂+(rN ) . . . �̂+(r1)�̂(r1) . . . �̂(rN )|�N 〉

= 1

N !
∑
i1i2σ

(∫
d3r1w

∗
i1
(r1)wi2(r1)

)
〈�N |�̂+(rN ) . . . a+

i1σ
ai2σ . . . �̂(rN )|�N 〉

= 1

N ! 〈�N |�̂+(rN ) . . . �̂+(r2)
∑
iσ

niσ �̂(r2) . . . �̂(rN )|�N 〉

= 1

N ! 〈�N |�̂+(rN ) . . . �̂+(r2)�̂(r2) . . . �̂(rN )|�N 〉. (42)

The expectation value of the particle-number operator
∑

iσ niσ is equal to unity for the multi-
particle state �̂(r2) . . . �̂(rN )|�N 〉 ∼ |�N=1〉. Obviously, the subsequent procedure applied
N − 2 times leads to the net result

ρ(rN ) = 1

N
〈�N |�̂+(rN )�̂(rN )|�N 〉. (43)

This result can be understood if we introduce explicitly the particle-density operator

n̂(r) ≡ �̂+(r)�̂(r), (44)

and thus the particle density is

n(r) ≡ Nρ(r) = 〈�N |�̂+(r)�̂(r)|�N 〉. (45)

Hence, we obtain the explicit expression for the density of particles using equation (4), i.e.

n(r) =
∑
i1i2σ

w∗
i1
(r)wi2(r)〈�N |a+

i1σ
ai2σ |�N 〉, (46)

12
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or, equivalently

n(r) =
∑

i

|wi(r)|2〈ni 〉 +
∑
i1 �=i2

w∗
i1
(r)wi2(r)

∑
σ

〈a+
i1σ

ai2σ 〉, (47)

where averages 〈. . .〉 are taken with the N-particle ground state |�N 〉.
The first of two terms represents the contribution of the particle-number operator to the

total density of particles and appears in the Hartree–Fock approach as the only term. The
second term can provide a significant contribution when the average 〈a+

i1σ
ai2σ 〉 is of the same

magnitude as the first contribution. Explicitly, if the N-particle function has the form of a
simple determinant

�i1...iN (r1, . . . , rN) = 1√
N !

∣∣∣∣∣∣
wi1(r1) . . . wiN (r1)

...
. . .

...

wi1(rN) . . . wiN (rN)

∣∣∣∣∣∣ , (48)

then the occupancies 〈ni 〉 ≡ 1 in (47) and 〈a†
i1σ

ai2σ 〉 ≡ 0 for i1 �= i2. This is not the case
when the multi-configurational form (12) of �(r1, . . . , rN) is taken, as we shall see in the
following. In the remaining part of this paper we discuss the results obtained within this method
of approach for various nanosystems.

3. Atomic systems and nanoclusters

In this section we start with the simplest examples of lightest atoms and ions to illustrate the
specific features of the EDABI method, as well as to provide an elementary example of the
renormalized wave equation. In particular, we systematically enrich up the trial basis to build
up the Fock space.

3.1. A didactic example: He atom

We start by selecting as {wi (r)} just two 1s-like states for the He atom �σ(r) =
(α3/π)1/2 exp(−αr)χσ , where α is the effective inverse radius of the states. In other words,
the simplest trial field operator is of the form

�̂(r) = �↑(r)a↑ + �↓(r)a↓, (49)

where aσ is the annihilation operator of the particle in the state �σ(r). The Hamiltonian in the
second quantization for this two-element basis has then the form

H = εa(n↑ + n↓) + Un↑n↓, (50)

where n↑ = a†
↑a↑, whereas

εa = 〈�σ |H1|�σ 〉, (51)

and

U = 〈�σ �σ |V |�σ�σ 〉 (52)

are the matrix elements of the single-particle part defined as

H1 = − h̄2

2m
∇2

1 − h̄2

2m
∇2

2 − 2e2

κ0r1
− 2e2

κ0r2

a.u.≡ −∇2
1 − ∇2

2 − 4

r1
− 4

r2
(53)

and of the Coulomb interaction

V = e2

κ0|r1 − r2|
a.u.≡ 2

|r1 − r2| , (54)

13



J. Phys.: Condens. Matter 19 (2007) 255212 J Spałek et al

with the corresponding definitions in atomic units after the second equality sign. The only
eigenvalue of (50) is obtained for the state a†

↑a†
↓|0〉 and is E = 2εa + U . This total energy

is then minimized with respect to α to obtain the well known variational estimate of both
α and the ground-state energy EG, as discussed before [2]. However, we may look at the
problem differently. As the approximate field operator can be defined in an arbitrary basis,
we may regard the eigenvalue E as a functional of �σ (r), since the functions are under the
integral expressions. Therefore, the true wavefunction is obtained from the Euler equation
for the functional under the proviso that the wavefunction is normalized. This means that we
minimize the functional

E{�σ (r)} =
∑

σ

∫
d3r�∗

σ (r)H1(r)�σ (r)

+ 1
2

∑
σ

∫
d3rd3r ′|�σ(r)|2V12(r − r′)|�σ (r)|2. (55)

In effect, the Euler equation take the form of the unrestricted Hartree–Fock equations for �σ(r)(
∇2 − 2e2

κ0r

)
�σ (r) + �σ(r)

∫
d2r ′ e2

κ0|r − r′| |�σ(r′)|2 = λ�σ (r). (56)

Thus we can see that taking in the simplest case just two spin orbitals we obtain the well known
variational estimate [19] for α and EG for the He atom: α = 27/(16a0) and EG = −5.695 Ryd,
where a0 � 0.53 Å is the 1s Bohr orbit radius.

Obviously, the proposed expression (49) of the field operator is the simplest one, though it
leads to nontrivial results even though the trial atomic basis {�σ(r)} is far from being complete
in the quantum mechanical sense. However, we can improve systematically on the basis
by selecting a richer basis than that in (49). The further step in this direction is discussed
next.

3.2. The basis enrichment for the lightest atoms and ions: He, Li

We can expand the field operator in the basis involving the higher order irreducible
representations of the rotation group with n = 2, which in the variational scheme involve
including, apart from the �1s(r) orbital, also the higher �2s(r) and �2pm(r), with m =
±1, 0 (i.e. the next shell); all of them involving the adjustment of the corresponding orbital
characteristics αi , i = 1s, 2s and 2pm. The field operator is then

�̂(r) =
∑

σ

[
w1s(r)χ1σ a1σ + w2s(r)χ2σ a2σ +

+1∑
m=−1

w2pm(r)χmσ a2pmσ

]
≡

∑
iσ

wi(r)χiσ aiσ ,

(57)

where wi (r) are orthogonalized orbitals obtained from the nonorthogonal atomic10 basis
{�i(r)} in a standard manner. The Fock space spanned on 2 + 2 + 6 = 10 trial spin orbitals
contains D = (2M

Ne

)
dimensions, where M = 5 now and Ne = 2, 3 is the number of electrons

for He and Li, respectively. This means that D = 45 and 120 in these two cases and we have
to diagonalize the Hamiltonian matrices of this size to determine the ground and the lowest
excited states. One should note that we construct and subsequently diagonalize the 〈i |H | j〉
matrix in the Fock space for (fixed) parameters εa, ti j , and Vkl . After the diagonalization has

10 Note that the atomic orbitals 1s and 2s are not orthogonal to each other for arbitrary values of their spatial extents
1/αi . The 2p orbitals are orthogonal to each other and to s orbitals, since they contain a nontrivial angular dependence
expressed via spherical harmonics Y m

l (θ, φ).
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Table 1. Optimized Bohr-orbit radii ai = α−1
i of 1s, 2s, and 2p orbits (in units of a0), the overlap S

between renormalized 1s and 2s states, and the ground-state energy for the lightest atoms and ions
(five Slater orbitals taken).

a1s a2s a2p S EG (Ryd)

H 1 2 2 0 −1
H− 0.9696 1.6485 1.017 −0.1 −1.048 7
He 0.4274 0.5731 0.4068 −0.272 −5.794 04
He− 1.831 1.1416 0.4354 −0.781 −5.100 58
Li 0.3725 1.066 0.2521 0.15 −14.833 4
Be+ 0.2708 0.683 0.1829 0.109 −28.528 6

been carried out, we readjust the wavefunction and start the whole procedure again until the
absolute minimum is reached (cf figure 1).

By diagonalizing the corresponding Hamiltonian matrices and subsequently minimizing
the lowest eigenvalue with respect to the parameters αi —the inverse radial extensions of the
corresponding wavefunctions, we obtain the results presented in table 1 (the values a2pm are
all equal within the numerical accuracy ∼10−6). For example, the ground-state energy of He
is EG = −5.794 Ryd, which is close to the accepted ‘exact’ value [19] −5.8074, given the
simplicity of our approach. Further improvement is feasible by either including the n = 3
states or by resorting to the Gaussian basis; these are not performed in this part (see the next
sections). Instead, we elaborate on two additional features.

First, we can represent the ground-state two-particle spin-singlet wavefunction for the He
atom taking �̂(r|) in the form (57), which has the following form [6]:

|�He
0 〉 = (−0.799 211a+

1s↓a+
1s↑ + 0.411 751a+

1s↓a+
2s↑ − 0.411 751a+

1s↑a+
2s↓

− 0.135 451a+
2s↓a+

2s↑ + 0.035 7708a+
2 p0↓a+

2 p0↑ + 0.035 7641a+
2 p1↓a+

2 p−1↑
− 0.035 7641a+

2 p1↑a+
2 p−1↓)|0〉, (58)

Similarly, the Sz = +1/2 state for the Li atom is of the form

|�Li
0 〉 = (0.997 499a+

1s↓a+
1s↑a+

2s↑ − 0.057 0249a+
1s↑a+

2s↓a+
2s↑

+ 0.003 9591a+
1s↑a+

2 p0↓a+
2 p0↑ + 0.003 959 02a+

1s↑a+
2 p1↓a+

2 p−1↑
− 0.003 958 94a+

1s↑a+
2 p1↑a+

2 p−1↓ − 0.023 783a+
2s↑a+

2 p0↓a+
2 p0↑

− 0.023 7806a+
2s↑a+

2 p1↓a+
2 p−1↑ + 0.023 7806a+

2s↑a+
2 p1↑a+

2 p−1↓)|0〉. (59)

We see that the probability of encountering the configuration 1s2 in He is less than 2/3, whereas
the corresponding configuration 1s22s for Li almost coincides with that for the hydrogenic-
like picture. The reason for the difference is that the overlap integral between 1s and 2s
states S = 〈1s|2s〉 in the former case is large and the virtual transitions 1s � 2s do
not involve a substantial change in of the Coulomb energy. These wavefunctions can be
used to evaluate any ground-state characteristic by calculating 〈�G|Ô|�G〉 for Ô represented
in the second quantized form. For example, the atom dipole moment operator is d̂ =
e
∫

d3r�̂†(r)x�̂(r), etc.
The second feature is connected with determination of the microscopic parameters Vi jkl in

our Hamiltonian, since their knowledge is crucial for atomic cluster calculations, as well as the
determination of physical properties of extended systems as a function of the lattice parameter.
Namely, we can rewrite the Hamiltonian (5) for the case of a single atom within the basis (57)
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Table 2. Microscopic parameters (in Ryd) of the selected atoms and ions all quantities are
calculated for the orthogonalized atomic states. t is the 1s–2s hopping magnitude, Ui is the
intraorbital Coulomb interaction (i = 1s(1), 2s(2), m = 0(3), and m = ±1(p)), whereas Kij

and Ji j are the interorbital Coulomb and exchange interaction parameters.

t U1 U2 U3 Up K12 K13 K23 J12 J13 J23

H− 0.057 1.333 0.369 0.77 0.728 0.519 0.878 0.457 0.061 0.138 0.035
He 1.186 3.278 1.086 1.924 1.821 1.527 2.192 1.289 0.212 0.348 0.115
He− −1.1414 1.232 0.764 1.798 1.701 0.929 1.421 1.041 0.269 0.28 0.102
Li −0.654 3.267 0.533 3.105 2.938 0.749 3.021 0.743 0.06 0.606 0.014
Be+ −0.929 4.509 0.869 4.279 4.049 1.191 4.168 1.175 0.105 0.837 0.025

in the form

H =
∑
iσ

εi niσ + t
∑

σ

(a†
2σ a1σ + a†

1σ a2σ ) +
5∑

i=1

Ui ni↑ni↓ + 1
2

∑
i �= j

Ki j ni n j

− 1
2

∑
i �= j

Ji j
(
Si · Sj − 1

2 ni n j
) +

∑
i �= j

Ji j a
†
i↑a†

i↓a j↓a j↑ +
∑
i �= jσ

Vi j niσ a†
iσ a jσ .

(60)

t is the hopping integral between 1s and 2s states, Ui are the intraorbital Coulomb interactions,
Ki j are their interorbital counterparts, Vi j is the so-called correlated hopping integral, and Ji j

is the direct exchange integral, for states i and j = 1, . . . , 5. The principal parameters for the
atoms and selected ions are provided in table 2. We can draw the following interpretation from
this analysis. The calculated energy difference �E for He between the ground-state singlet
and the first excited triplet is −2.3707 − (−5.794) � 3.423 Ryd (the singlet 1s ↑ 2s ↓ is still
1 Ryd higher). The corresponding energy of the Coulomb interaction in the 1s2 configuration is
U1 = 3.278, a value comparable to �E . Additionally, the Coulomb interaction in the 1s ↑ 2s ↓
state is ≈1.5 Ryd, a substantially lower value. The relative energetics tells us why we have a
substantial admixture of the excited 1s ↑ 2s ↓ state to the singlet 1s2. In other words, a
substantial Coulomb interaction ruins the hydrogenic-like scheme, although the actual values
could still be improved by further enriching the trial basis.

One may ask how the renormalized wave equation would look in the present situation.
The answer to this question is already not brief for the basis containing M = 5 starting states
{wi (r)}; we return to this question in a slightly simpler case of molecular states, which we
consider next.

3.3. H2 molecule and the H−
2 and H+

2 ions

In this subsection we consider the H2 and Li2 molecules, and the H−
2 ion molecule. For

the illustration of the method we have plotted in figure 2 the level scheme for the H2 and
H−

2 systems. We consider first the situation with only one 1s-like orbital per atom. For H2

we have
(4

2

) = 6 two-particle states [2]. For this purpose, we start with the parametrized
Hamiltonian (60), where subscripts ‘i ’ and ‘ j ’ label now the two atomic sites and hence
U1 = U2 = U , K12 = K , J12 = J , V12 = V , and ε1 = ε2 = εa. The lowest eigenstate for
H2 is

EG ≡ λ5 = 2εa + 1
2 (U + K ) + J − 1

2

[
(U − K )2 + 16(t + V )2

]1/2
, (61)

and the corresponding singlet ground state in the Fock space has the form
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Figure 2. The level scheme of the H2 ground state and the lowest H−
2 states as a function of the

interatomic distance R. The hopping electron illustrates the relevance of the H−
2 ionic configuration

when measuring the tunnelling conductivity of the H2 system.

|G〉 = 1√
2D(D − U + K )

×
{

4(t + V )√
2

(a†
1↑a†

2↓ − a†
1↓a†

2↑) − (D − U + K )√
2

(a†
1↑a†

2↓ + a†
1↓a†

2↑)
}

|0〉,
(62)

where

D ≡ [
(U − K )2 + 16(t + V )2

]1/2
.

The lowest spin-singlet eigenstate has an admixture of symmetric ionic state 1√
2
(a†

1↑a†
2↓ +

a†
1↓a†

2↑). Therefore, to see the difference with either the Hartree–Fock or Heitler–London
approach to H2 we construct the two-particle wavefunction for the ground state according to
the prescription

�0(r1, r2) ≡ 1√
2
〈0|�̂(r1)�̂(r2)|G〉. (63)

Taking �̂(r) = ∑2
i=1

∑↓
σ=↑ �i(r)χσ (r), we obtain that

�0(r1, r2) = 2(t + V )√
2D(D − U + K )

�c(r1, r2) − 1

2

√
D − U + K

2D
�i(r1, r2), (64)

where the covalent part is

�c(r1, r2) = [w1(r1)w2(r2) + w1(r2)w2(r1)]
[
χ↑(r1)χ↓(r2) − χ↓(r1)χ↑(r2)

]
, (65)

whereas the ionic part takes the form
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Figure 3. The single-particle (γ ) and many-body (γmb) covalency factors for the H2 wavefunctions.
For details see the main text.

�i (r1, r2) = [w1(r1)w1(r2) + w2(r1)w2(r2)]
[
χ↑(r1)χ↓(r2) − χ↓(r1)χ↑(r2)

]
. (66)

The ratio of the coefficients before �c(r1, r2) and �i (r1, r2) can be regarded as the many-
body covalency γmb. This value should be distinguished from the single-particle covalency γ

appearing in the definition of the orthogonalized atomic orbital wi(r):

wi (r) = β
[
�i (r) − γ� j(r)

]
, (67)

with j �= i . The two quantities are drawn in figure 3. The many-body covalency γmb represents
a true degree of multiparticle configurational mixing.

In table 3 we list the energies and the values of the microscopic parameters for H2 system
with optimized orbitals, whereas in table 4 the same is provided for the H−

2 molecular ion.
One should notice a drastic difference for the so-called correlated hopping matrix element
V in the two cases. The same holds true for the direct exchange integral J (ferromagnetic).
This exchange integral is always decisively smaller than that for the antiferromagnetic kinetic
exchange, Jkex = 4(t + V )2/(U − K ). The virtual interatomic hopping processes leading to
the strong kinetic exchange are the source of the singlet nature of the H2 ground state. The H−

2
ground state is unstable with respect to the dissociation into H2 and e−, in contrast to the H−
case. However, the energetics of such a state is important when calculating e.g. the metallization
of molecular hydrogen or determining the tunnelling conductivity through the H2 molecule, as
shown schematically in figure 2. This last Figure illustrates the method of determining the
energetics of excited states of H2 by measuring e.g. the tunnelling conductivity (i.e. via the H−

2
intermediate state; see below).

For the sake of completeness, we have provided in figure 4 the energy levels versus R
for H2, H−

2 , and H+
2 ions and have labelled both the bonding (B) and antibonding (AB) level

positions. We see that the distance between H2 and H−
2 levels is much smaller than the distance

between H2 and H+
2 states. This will lead to the asymmetry in the tunnelling conductivity when

reversing the bias voltage sign, as discussed in detail in section 5.
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Table 3. Ground-state energy and microscopic parameters (in Ryd) for the H2 molecule. The
last column represents the kinetic exchange integral characterizing intersite antiferromagnetic
exchange.

R/a EG/N εa t U K V (mRyd) J (mRyd) 4(t+V )2

U−K (mRyd)

1.0 −1.0937 −1.6555 −1.1719 1.8582 1.1334 −13.5502 26.254 5 7755.52
1.5 −1.1472 −1.7528 −0.6784 1.6265 0.9331 −11.6875 21.252 9 2747.41
2.0 −1.1177 −1.722 −0.4274 1.4747 0.7925 −11.5774 16.921 8 1130.19
2.5 −1.0787 −1.6598 −0.2833 1.3769 0.6887 −12.0544 13.149 8 507.209
3.0 −1.0469 −1.5947 −0.1932 1.3171 0.6077 −12.594 9.815 3 238.939
3.5 −1.0254 −1.5347 −0.1333 1.2835 0.5414 −12.8122 6.922 4 115.143
4.0 −1.0127 −1.4816 −0.0919 1.2663 0.4854 −12.441 4.573 6 55.8193
4.5 −1.006 −1.4355 −0.0629 1.2579 0.4377 −11.4414 2.836 7 26.9722
5.0 −1.0028 −1.3957 −0.0426 1.2539 0.3970 −9.9894 1.665 2 12.9352
5.5 −1.0012 −1.3616 −0.0286 1.2519 0.3623 −8.3378 0.933 4 6.1455
6.0 −1.0005 −1.3324 −0.01905 1.251 0.3327 −6.7029 0.503 3 2.8902
6.5 −1.00024 −1.3073 −0.0126 1.2505 0.3075 −5.2242 0.262 6 1.3452
7.0 −1.0001 −1.2855 −0.0083 1.2503 0.2856 −3.9685 0.133 3 0.6197
7.5 −1.00004 −1.2666 −0.0054 1.2501 0.2666 −2.9509 0.066 0.2826
8.0 −1.00002 −1.25 −0.0035 1.25006 0.25 −2.1551 0.032 0.1277
8.5 −1.00001 −1.2353 −0.0023 1.25003 0.2353 −1.5501 0.015 23 0.0572
9.0 −1. −1.2222 −0.0015 1.25001 0.2222 −1.1005 0.007 1 0.0254
9.5 −1. −1.2105 −0.0009 1.25001 0.2105 −0.7725 0.003 3 0.0112

10.0 −1. −1.2 −0.0006 1.25 0.2 −0.5371 0.001 5 0.0049

Table 4. The same as in table 3 for H−
2 ion.

R/a EG/N εa t U K V J 4(t+V )2

U−K

1.0 −0.4591 −1.6607 −0.5869 1.1414 0.7360 −0.0105 0.016 3 3.522 0
1.5 −0.7659 −1.6647 −0.4285 1.1279 0.6983 −0.0085 0.016 1 1.778 2
2.0 −0.8813 −1.6259 −0.3083 1.0979 0.6474 −0.0078 0.015 0 0.887 1
2.5 −0.9264 −1.5737 −0.2221 1.0692 0.5961 −0.0079 0.013 3 0.447 6
3.0 −0.9423 −1.5204 −0.1603 1.0466 0.5476 −0.0086 0.011 3 0.228 6
3.5 −0.9460 −1.4704 −0.1154 1.0305 0.5025 −0.0093 0.009 1 0.117 9
4.0 −0.9450 −1.4252 −0.0826 1.0196 0.4608 −0.0099 0.007 1 0.061 2
4.5 −0.9426 −1.3848 −0.0585 1.0126 0.4226 −0.0101 0.005 2 0.031 9
5.0 −0.9402 −1.3491 −0.0410 1.0080 0.3881 −0.0099 0.003 7 0.016 7
5.5 −0.9384 −1.3176 −0.0284 1.0051 0.3573 −0.0093 0.002 5 0.008 8
6.0 −0.9373 −1.2901 −0.0194 1.0032 0.3300 −0.0085 0.001 7 0.004 6
6.5 −0.9365 −1.2621 −0.0130 0.9905 0.3058 −0.0075 0.001 1 0.002 5
7.0 −0.9363 −1.2402 −0.0086 0.9876 0.2847 −0.0065 0.000 7 0.001 3
7.5 −0.9365 −1.2211 −0.0056 0.9856 0.2662 −0.0055 0.000 4 0.000 7
8.0 −0.9367 −1.2044 −0.0036 0.9844 0.2498 −0.0046 0.000 3 0.000 4
8.5 −0.9372 −1.1897 −0.0022 0.9839 0.2352 −0.0037 0.000 2 0.000 2
9.0 −0.9376 −1.1768 −0.0013 0.9839 0.2222 −0.0030 0.000 09 0.000 10
9.5 −0.9380 −1.1653 −0.0008 0.9842 0.2105 −0.0024 0.000 05 0.000 05

10.0 −0.9384 −1.1549 −0.0004 0.9848 0.2000 −0.0018 0.000 03 0.000 03

3.4. Hydrogen clusters, HN

As the next application we consider hydrogen-cluster HN systems, with N � 6 atoms. We take
the atomic-like 1s orbitals {�i (r)} of an adjustable size a ≡ α−1, composing the orthogonalized
atomic (Wannier) functions {wi(r)}i=1,...,N . The cluster of N atoms with N electrons contains
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Figure 5. Ground- and excited-state energies for the H4 square configuration as a function of the
interatomic distance.

(2N
N

)
states and the second-quantized Hamiltonian is of the form (60), with three- and four-site

terms added. The three- and four-site interaction terms are difficult to calculate in the Slater
basis (see below). Therefore, we have made an ansatz [7], namely we impose the condition
on the trial Wannier function that the three- and four-site matrix elements Vi jkl vanish. This
allows for an explicit expression of the three- and four-site matrix elements V ′

i jkl in the atomic
representation via the corresponding one- and two-site elements. In figures 5 and 6 we present
the results for the ground- and excited-state energies for the square and face-centred-square
(fcs) configurations, N = 4 and 5, respectively. The states are grouped into manifolds, which
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Figure 6. Ground- and excited-state energies for the H5 face-centred-square (fcs) configuration as
a function of the interatomic distance.

are characterized by the number of double occupancies of a single state wi(r), appearing
in the system. The horizontal lines mark the ground state, states with one and two double
electron occupancies in the atomic limit (i.e. for large interatomic distance). The manifolds
thus correspond to the Hubbard subbands introduced for strongly correlated solids [20]. As far
as we are aware, our results are the first manifestation of the energy manifold evolution into well
separated subbands with the interatomic distance increase. The first two subbands correspond
to HOMO and LUMO levels determined in quantum chemical calculation [18]. In figures 7
and 8 we represent the renormalized Wannier function profiles for the face centred square
configuration of N = 5 atoms, for the central and the corner positions, respectively. Note the
small negative values on the nearest-neighbour sites to assure the orthogonality of the functions
centred on different sites. Obviously, the atom in the centre of the square is inequivalent to the
remaining four corner atoms, as can be see explicitly in figure 9, where the density profile
n(r) in the cluster plane, according to formula (47), has been drawn. The electron density
near the central atom is decisively smaller, a clear sign of electron-correlation effects induced
by the repulsive Coulomb interaction. This assessment is corroborated in figure 10, where the
difference from the Hartree–Fock part of the density profile has been presented. These densities
should be possible to determine with the help of scanning tunnelling microscopy (STM).

3.5. Energetically stable H4 clusters and fermionic nanoladders

The HN clusters of regular-polygon shape are not stable energetically, as the ground state
energies in figures 5 and 6 at the minimum (per atom) is above that for the H2 case. This
is because a stable, say, H4 cluster will reflect strong molecular bonding of each pair of H2

molecules to saturate the covalent character of the bonding. To prove that this is indeed the
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case we have considered an example of a rectangular cluster differentiating between the lateral
distance (say, along the bond of the length a) and the horizontal intermolecular distance b.
We consider both the planar and the twisted by 90◦ configurations, as drawn in figure 11.
The Gaussian STO-3G basis of an adjustable size α−1 has been used in this case, so the
three- and four-site interaction terms in the atomic basis are included explicitly. Additionally,
the Hamiltonian in the second quantization, only containing the principal one-and two-site
interactions, is taken in the form [5]

H = εeff
a

∑
iσ

niσ +
∑
i �= j

ti j a
†
iσ a jσ + U

∑
i

ni↑ni↓ + 1
2

∑
i �= j

Ki jδniδn j , (68)
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where δni = 1 − ni , ni = ∑
σ niσ and

εeff
a = εa + 1

2N

∑
i �= j

(
Ki j + 2

Ri j

)
, (69)
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Figure 11. Schematic representation of the H4 cluster geometries: (i) parallel and (ii) perpendicular
orientations of H2 molecules. Geometrical parameters of the cluster are the bond length a and the
intermolecular distance b. The numbering order of the lattice sites j is also provided.

Table 5. The optimal bond length amin, inverse orbital size αmin, and the ground-state energy EG

per atom for the planar H4 cluster (i). The corresponding energy of the molecular dimer EG(2H2)

is also provided.

b/a0 amin/a0 αmina0 EG/N EG(2H2)/N

1.7 1.3627 1.2231 −0.928 424 −0.922 411
2.0 1.3291 1.2395 −1.019 152 −1.016 365
2.5 1.3518 1.2304 −1.098 551 −1.097 314
3.0 1.3829 1.2157 −1.131 770 −1.131 167
3.5 1.4075 1.2041 −1.144 613 −1.144 317
4.0 1.4238 1.1969 −1.148 598 −1.148 454
5.0 1.4373 1.1911 −1.148 093 −1.148 056
6.0 1.4390 1.1908 −1.145 975 −1.145 964
8.0 1.4375 1.1924 −1.143 651 −1.143 649

10.0 1.4366 1.1929 −1.142 756 −1.142 755
20.0 1.4357 1.1940 −1.141 908 −1.141 908
∞ 1.4356 1.1943 −1.141 783

with the last term in the parenthesis representing the Coulomb repulsion (in atomic units)
between the protons placed at the distance Ri j , together with the electron–electron intersite
repulsion Ki j (such a redefinition is necessary to achieve the proper atomic limit, when the
nearest-neighbour distance R → ∞). Also, we have to take into account three different
hopping integrals: between the nearest neighbours t1 = t12 = t34, between the second
neighbours t2 = t13 = t24, and between the third neighbours t3 = t14 = t23. Likewise, we
have three intersite Coulomb interactions {Kn}n=1,2,3.

The basic ground-state characteristics for the two spatial arrangements is provided in
tables 5 and 6.

The results are listed as a function of intermolecular distance and include the bond length
amin, the inverse Gaussian-function size α, the energy of H4 and the energy of two H2 molecules
(per atom). The principal feature of these results is that the system is energetically stable against
the dissociation into two H2 molecules (cf the last row in the two situations). The global minima
are the following:

(i) for the planar geometry bmin = 4.32a0, amin = 1.4303a0, αmin = 1.1937a−1
0 , and

Emin
G /N = −1.1490 61 Ryd; and

(ii) for the twisted 90◦ geometry bmin = 4.13a0, amin = 1.4318a0, αmin = 1.119 27a−1
0 , and

Emin
G /N = −1.150 396 Ryd.

So, geometry (ii) is the most stable in vacuum and should constitute a building block for the H2

molecular crystal. Note that we have not included the zero-point motion of the nuclei [2]. The
ratio b/a is roughly four, so substantial molecular identity of H2 pairs survives.

As in all cases before, the knowledge of microscopic parameters is crucial for the larger-
cluster or solid-state configurations (Hamiltonian (68) provides the whole dynamics within
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Table 6. The optimal bond length amin, inverse orbital size αmin, and ground-state energy EG per
atom for the cluster geometry (ii). The corresponding energy of the molecular dimer EG(2H2) is
also provided.

b/a0 amin/a0 αmina0 EG/N EG(2H2)/N

1.6 1.5796 1.1568 −0.928 235 −0.923 390
2.0 1.3759 1.2206 −1.038 891 −1.037 968
2.5 1.3725 1.2193 −1.108 116 −1.107 803
3.0 1.3947 1.2091 −1.136 931 −1.136 809
3.5 1.4153 1.2000 −1.147 566 −1.147 519
4.0 1.4292 1.1937 −1.150 310 −1.150 293
5.0 1.4397 1.1894 −1.148 674 −1.148 672
6.0 1.4400 1.1897 −1.146 200 −1.146 200
8.0 1.4377 1.1926 −1.143 705 −1.143 705

10.0 1.4367 1.1929 −1.142 774 −1.142 774
20.0 1.4357 1.1940 −1.141 908 −1.141 908
∞ 1.4356 1.1943 −1.141 783

Table 7. Microscopic parameters (in Ryd) for the H4 cluster configuration (i) calculated in the
Gaussian STO-3G basis. Corresponding values of the inverse orbital size αmin and the bond length
amin are provided in table 5.

b/a0 εeff
a t1 t2 t3 U K1 K2 K3

1.7 −0.2354 −0.8610 −0.6622 0.0822 1.811 1.027 0.947 0.728
2.0 −0.3088 −0.8791 −0.5137 0.0617 1.802 1.032 0.872 0.692
2.5 −0.4233 −0.8390 −0.3268 0.0352 1.748 1.007 0.750 0.619
3.0 −0.4925 −0.7983 −0.2067 0.0220 1.702 0.984 0.649 0.553
3.5 −0.5319 −0.7685 −0.1290 0.0150 1.671 0.967 0.567 0.497
4.0 −0.5533 −0.7492 −0.0785 0.0103 1.653 0.957 0.500 0.449
5.0 −0.5689 −0.7316 −0.0267 0.0037 1.639 0.949 0.401 0.373
6.0 −0.5707 −0.7275 −0.0084 0.0007 1.638 0.948 0.334 0.318
8.0 −0.5692 −0.7269 −0.0006 −0.0000 1.640 0.949 0.250 0.243

10.0 −0.5684 −0.7268 −0.0000 −0.0000 1.641 0.950 0.200 0.197
20.0 −0.5673 −0.7272 −0.0000 −0.0000 1.642 0.951 0.100 0.100
∞ −0.5671 −0.7273 0 0 1.642 0.951 0 0

the subspace with one orbital per atom). Therefore, in 7 and 8 we list them for the two
configurations considered, as a function of intermolecular distance b (the last row represents
the corresponding values for H2 in the ground state).

The stability of the H4 cluster raises a very interesting question of stability of H2N ladders,
which can be regarded as the simplest fermionic ladders with the frustration of electron spins
in the twisted configuration.

For this purpose we have considered planar (i) and 90◦ twisted (ii) ladders composed of
eight to 12 atoms. In figure 12 we display the ground-state energy (per atom) for the nanoladder
containing N = 10 atoms with periodic boundary conditions. The insets provide the values of
the optimal bond length amin (left) and the inverse atomic (Gaussian) orbital size αmin (right).
The Gaussian orbitals (STO-3G basis) have been used to define the single-particle basis. The
horizontal dashed line marks the H2 ground-state energy. One should also note that due to
the closed-shell molecular-crystal configuration (b/a ∼ 4) of the ground state the data almost
do not depend on the system size (e.g. analogical results for N = 8 fit onto those shown in
figure 12 up to the pixel size). The characteristics of the global minima are the following:
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Table 8. Microscopic parameters (in Ryd) for the H4 cluster configuration (ii) calculated in the
Gaussian STO-3G basis. Corresponding values of the inverse orbital size αmin and the bond length
amin are provided in table 6.

b/a0 εeff
a t1 t2 t3 U K1 K2 K3

1.6 −0.5352 −0.5423 −0.2986 −0.2986 1.650 0.911 0.816 0.816
2.0 −0.4511 −0.7496 −0.2230 −0.2230 1.732 0.991 0.772 0.772
2.5 −0.4863 −0.7820 −0.1451 −0.1451 1.711 0.986 0.680 0.680
3.0 −0.5221 −0.7721 −0.0923 −0.0923 1.683 0.972 0.598 0.598
3.5 −0.5467 −0.7558 −0.0571 −0.0571 1.661 0.961 0.530 0.530
4.0 −0.5613 −0.7423 −0.0342 −0.0342 1.646 0.953 0.473 0.473
5.0 −0.5715 −0.7293 −0.0115 −0.0115 1.637 0.947 0.387 0.387
6.0 −0.5719 −0.7264 −0.0038 −0.0038 1.636 0.947 0.326 0.326
8.0 −0.5692 −0.7269 −0.0003 −0.0003 1.640 0.949 0.247 0.247

10.0 −0.5685 −0.7268 −0.0000 −0.0000 1.641 0.950 0.198 0.198
20.0 −0.5673 −0.7272 −0.0000 −0.0000 1.642 0.951 0.100 0.100
∞ −0.5671 −0.7273 0 0 1.642 0.951 0 0

(i) for the planar geometry bmin = 4.00a0, amin = 1.422a0, αmin = 1.189a−1
0 , and

Emin
G /N = −1.1626 Ryd; and

(ii) for the twisted 90◦ geometry bmin = 3.67a0, amin = 1.426a0, αmin = 1.178a−1
0 , and

Emin
G /N = −1.1680 Ryd.

These values lead to the binding energies of the molecules in the nanoladders: �E (i)
G /N =

20.8 mRyd and �E (ii)
G /N = 26.2 mRyd, respectively, i.e. about three times larger than for the

H4 clusters.
One can also draw some conclusions about the nature of electronic states in those

nanoladders. Namely, by calculating the so-called charge stiffness (Drude weight) and the
charge gap (cf [5]) one can draw a phase diagram shown in figure 13 for a planar nanoladder
on the plane a–b. For either a or b large we expect the Mott insulating state of spins S = 1/2.
However, it is interesting to note that for bond lengths in the range 2–3 and an appropriate
intermolecular distance (b ∼ a) a quasimetalic state is possible and is followed by a band
insulator for small b < a. The metal phase sandwiching the two, band and Mott insulating
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Figure 13. Phase diagram of the planar fermionic ladder. The optimal value of the bond length
amin is drawn as a dashed line. The dotted line marks the effective quarter-filling obtained from the
noninteracting band model.

phases appears well beyond the optimal configuration for the nanoladder (see the dashed line
representing a = amin as a function of b). So it can appear only when a nanoladder is artificially
made on a supporting substrate. The dotted line marks the model of the quarter-filled (QF) band
system discussed in [5].

4. Monoatomic nanowires: from nanometal to Mott insulator

4.1. Ground-state properties

The EDABI method was applied first to nanochains starting with the Slater basis of atomic
states [5, 11, 12]. In this section we present the new results starting from the STO-3G ‘atomic’
basis of adjustable size. The selection of this basis makes the inclusion of three- and four-
site interactions possible. We limit ourselves here to the situation with one electron per atom.
Strictly speaking, we study a nanochain of hydrogen atoms, which can also model the behaviour
of single-valence-electron nanowires.

We start again with Hamiltonian (68) describing the so-called extended Hubbard model
for a system with one orbital per atom (here the orbitals are taken as Gaussians of an adjustable
size, out of which we compose the Wannier functions). The diagonalization in the Fock space
is performed with the help of the Lanczos method described in detail elsewhere [5, 6]. In
figure 14 we plot the ground-state energy of chains containing N = 6–10 hydrogen atoms,
as a function of interatomic distance R (in units of a0). The Wannier functions are calculated
in the tight-binding approximation, with six attractive atomic Coulomb wells representing the
periodic potential. In the inset we display the inverse size α (in units of inverse a0) of the
Gaussian functions (note that the actual size of atoms is reduced in the correlated state). The
continuous EG lines INS and M represent respectively the Mott insulating state represented by
E INS

G = εeff
a , and the ideal metallic state, for which

E M
G = εeff

a − 4|t|
π

+ 1

2N

∑
i �= j

Ki j 〈δniδn j 〉, (70)

where the correlation is taken for the one-dimensional ideal gas

〈δni δn j〉 = 2
sin2(π |i − j |/2)

(π |i − j |)2
. (71)
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Figure 14. Ground-state energy per atom versus R for the linear chain with N = 6–10 atoms with
periodic boundary conditions. The STO-3G Gaussian basis for representation of atomic orbitals
forming the Wannier function has been used. The inset provides a universal behaviour of the inverse
size α of the orbitals. For details see the main text.

For the sake of completeness, we have also included the Hartree–Fock (HF) result for EG

(the dotted line) calculated for the antiferromagnetic (Slater) state; it provides a better estimate
of EG than either M or INS curves. For discussing the HF solution we take the Hamiltonian
(68) in the form

H HF = εeff
a

∑
iσ

niσ + t
∑
iσ

(
a†

iσ ai+1σ + h.c.
)

+ U
∑

i

(〈ni↑〉ni↓ + 〈ni↓〉ni↑ − 〈ni↑〉〈ni↓〉)

+
∑
i< j

Ki j
(〈δni 〉δn j + δni〈δn j 〉 − 〈δni 〉〈δn j 〉

)

−
∑
i< jσ

Ki j

(
〈a†

iσ a jσ 〉a†
jσ aiσ + 〈a†

jσ aiσ 〉a†
iσ a jσ − |〈a†

iσ a jσ 〉|2
)

. (72)

The HF solution involves calculations of the ground-state energy with a simultaneous self-
consistent determination of the sublattice magnetization m = 〈ni↑ − ni↓〉 and of the hopping
correlation function 〈a†

iσ a jσ 〉, which will not be discussed in detail here [5] (obviously,
〈δni 〉 = 0).

The most spectacular are the spin–spin correlations in the collective spin singlet
(
∑N

i=1 Si ≡ 0) state. In figure 15(a) we display the corresponding spin–spin correlation
function 〈Si · S j 〉 as a function of the distance |i − j | for N = 10 and several values of R. We
observe Néel-like state correlations in this spin singlet state as it oscillates through the whole
system length. For N = 11 these quasi-oscillatory correlations are strongly suppressed due to
the spin-frustration effects, as shown explicitly in figure 15(b). Changing the lattice constant
R does not alter the picture qualitatively. This long-range feature of spin–spin correlations
will have profound consequences on the single-particle spectrum, as we discuss below. Here
the boundary conditions discussed below (cf section 4.5) have been considered, although the
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(a) (b)

Figure 15. Parity effect on spin ordering: spin–spin correlations for nanochains of N = 10 (a)
and N = 11 (b) atoms. The values of the interatomic distance R are specified in the atomic units
(a0 = 0.529 Å).
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Figure 16. Momentum distribution nkσ for the number of atoms N = 6–14 as it evolves with the
increasing lattice constant R.

difference between cases a and b survives even for the periodic boundary conditions. Additional
features of the N dependence of 〈Si · S j 〉 have been discussed in [21].

4.2. Momentum distribution in the ground state: Fermi or Luttinger nanoliquid localization?

We now introduce the particle quasi-momentum distribution nkσ in the ground state for the
situation with one electron per atom; this is displayed in figure 16 for the number of atoms
N = 6–14. We observe a very universal character of the curves provided the periodic boundary
conditions are taken for the chains of N = 4n + 2 atoms, whereas the antiperiodic boundary
conditions are taken for N = 4n atoms, with n being a natural number. It is very tempting to
regard the distributions for R/a0 � 3.5 as a modified Fermi–Dirac function characterizing the
Fermi liquid even for such short chains for which we have discrete momentum states. However,
for R/a0 → 4 the distributions becomes continuous, i.e. without an apparent Fermi ridge at
Fermi momentum kF = π/(2R), in rough agreement with the preliminary results for the case
with the Slater-type orbitals [12]. So, a crossover with increasing interatomic distance from
the Fermi-liquid-like behaviour to the chain of atomic-like states is clearly seen. It should be
noted that the Luttinger-liquid-like scaling fitting to the points displayed in figure 16 is equally
convincing, at least for this half-filled band configuration, as discussed next.
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Figure 17. Statistical distribution nkσ for electrons in a chain of N = 6–14 atoms with periodic
boundary conditions. The interatomic distance R is specified in units of Bohr radius a0. The
continuous line represents the parabolic interpolation, which is of the same type for both k > kF

and k < kF.

4.3. Single-particle spectral density function evolution

The state of a nanochain viewed through the statistical distribution of momentum states can
be discussed as follows. The ideal Mott localized state, as is seen in the bulk systems, is
not possible for a finite system. This is simply because the length of the system is finite
and therefore the probability of the electron tunnelling from an atomic state on one chain
end to the other end is nonzero. The quantitative question is whether it is of the order of
e−NαR or larger. Due to the fact that the overlap integral is ∼ 1

3 (αR)2e−αR , the probability is
enhanced by a nonzero hopping amplitude between more distant neighbours. Having in mind
this circumstance, it is at least imaginable that the distribution function displayed in figure 16 is
Fermi–Dirac-like for αR ∼ 1. One can thus try to formalize this observation further. Namely,
in figure 17 we plot nkσ for a half filled band system containing up to N = 14 electrons. The
continuous lines represent the parabolic parametrization:

nkσ = 1
2 sgn(k − kF)

[
α(k − kF)

2 + β|k − kF| + γ
]
, (73)

for both k < kF and k > kF (note that the Fermi point is not occupied for N even).
This parametrization, in fact implying a discontinuous distribution, allows us to interpret the
distribution discontinuity �nkF ≡ nkF−0 − nkF+0 in terms of effective mass enhancement at the
Fermi point.

m∗
F/mBAND = (�nkF)

−1 ≡ Z−1, (74)

where Z−1 is the usual Fermi-liquid enhancement factor. The corresponding enhancement
factor determined in this manner is plotted in figure 18 (squares), whereas the solid line
represents the finite-size scaling with interatomic distance, m∗

F/mBAND = A|R − RC |−γ ,
with A � 10.2, the localization thereshold is RC a0 = 3.92, and the critical exponent has
the approximate value γ = 4/3. This behaviour emulates a quantum critical behaviour and
should not be taken literally. Nonetheless, the value of RC distinguishes qualitatively between
the nanometallic state R < RC (for which the distribution (73) has a jump at kF) and the Mott
insulating (semiconducting) state (R > RC ; the distribution function is a continous function
of k).

However, the situation is not this simple. One can ask the question of whether this short
one-dimensional system does not rather resemble the Luttinger-liquid-like behaviour. This
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Figure 18. The critical behaviour of the quasiparticle mass at the Fermi level; for details see the
main text.

Figure 19. Luttinger-liquid scaling for a half-filled one-dimensional chain of N = 6–14 atoms.
Interatomic distance R is specified in the units of a0.

task has been undertaken seriously and in figure 19 we plot the fitting of the data displayed
in figure 16 to the corresponding dependence for the Tomanaga–Luttinger liquid, with the
logarithmic correction included, namely [22]

ln |nkF − nkσ | = −� ln z + b ln ln z + c + θ(1/ ln z), (75)

where z = π/|kF −π/R|,�, b, and c are constants. The parameters depend on the distance R,
as shown elsewhere [22]. This fitting also provides the localization thereshold RC � 2.60aB ,
which is reduced by 50% from the value for the Fermi liquid interpretation of nkσ . One should
also note that the present interpretation of the exact solution displayed in figure 16 does not
admit a discontinuity at k = kF. However, it is quite amazing that both the Fermi- and
Luttinger-liquid interpretations can provide a satisfying interpretation of nkσ to an equal degree.
This means that there must be an underlying universal behaviour of a new type, incorporating
Fermi- and Luttinger-liquid concepts, at least semiquantitatively. Nonetheless, for the not too
large R the Fermi–Dirac-like distribution fits better the k dependence. The situation for odd N
requires an explicit discussion of boundary conditions and is provided below.
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Figure 20. Spectral functions A(k, ω) for N = 10 (a) and N = 12 atoms, with periodic boundary
conditions. A clear dispersion of the states is observed for R = 1.5a0, which transform into the
atomic peaks with the increasing R, through an incoherent regime for R/a0 ≈ 3.

To characterize the spectrum of single-particle excitations we use the definition of the
spectral-density function

A(k, ω) =
∑

n

∣∣∣〈�N±1
n |a†

kσ |�N
0 〉

∣∣∣2
δ
[
ω − (E N+1

n − E N
0 )

]
, (76)

where the upper(lower) sign corresponds to the energies with ω > μ (ω < μ),
respectively, |�N

n 〉 is the nth eigenstate of the system containing N particles, E N
n is the

corresponding eigenenergy, and 〈· · ·〉 is the matrix element are calculated within the Lanczos
algorithm [23, 24, 27]. In figure 20 we present the panel of A(k, ω) for three distances
R. For small R, a clear two-peak structure appears at the Fermi momenta kF = ±π/(2R)

for N = 12; an artificial broadening of the peaks appears because we use the approximate
expression for the δ(x) function: δ(x) ≈ (1/π)ε/(x2 + ε2), with ε = 10−2 Ryd. The splitting
is caused by the antiferromagnetic correlations depicted in figure 15(a). In the range R/a0 � 2
the quasiparticles are well defined, but an incoherent part grows with the increasing R. For
R/a0 ∼ 3–4 the Hubbard subbands are formed and evolve continuously into atomic levels
located respectively at ω = εa and ω = εa + U for R → ∞. These two limiting peak
positions correspond to the ground H0 and excited H− states, respectively. Combining the
last results with the corresponding discussion for the HN clusters, one sees that the Hubbard
subband structure represents a universal feature of nanoscopic systems. In the limit of larger
interatomic separation this structure is clearly distinguishable from the discrete level structure
coming from geometric quantization of this confined system.

To demonstrate the importance of the incoherent part of the spectrum we have calculated
the density of states N (ω) = ∑

k A(k, ω), displayed in figure 21 for N = 10 atoms, for the
interatomic distances specified. In the regime R = 3–5a0 well resolved quasiparticle peaks
coalesce into a complicated random-like (incoherent) spectrum, out of which clean atomic
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Figure 21. Density of single-particle states for N = 10 atoms. Note a pronounced incoherent
spectrum for R in the range 3–5a0.

Table 9. Optimized inverse orbital size, microscopic parameters and the ground-state energy for
N = 10 atoms calculated in the Slater-type basis, as a function of interatomic distance. Intersite
Coulomb repulsion K1 is included on the mean-field level in εeff

a ; the Hubbard U term is treated
exactly. The single-particle potential contains six Coulomb wells.

R/a0 αmina0 εeff
a t U K EG/N

1.5 1.806 0.9103 −1.0405 2.399 1.695 0.0665
2.0 1.491 −0.1901 −0.5339 1.985 1.172 −0.5179
2.5 1.303 −0.6242 −0.3076 1.722 0.889 −0.7627
3.0 1.189 −0.8180 −0.1904 1.553 0.713 −0.8800
3.5 1.116 −0.9104 −0.1230 1.440 0.596 −0.9391
4.0 1.069 −0.9559 −0.0815 1.365 0.513 −0.9693
4.5 1.039 −0.9784 −0.0546 1.317 0.451 −0.9848
5.0 1.022 −0.9896 −0.0370 1.288 0.403 −0.9926
6.0 1.013 −0.9977 −0.0165 1.269 0.334 −0.9982
7.0 1.001 −0.9995 −0.0072 1.252 0.286 −0.9996
8.0 1.001 −0.9999 −0.0031 1.251 0.250 −0.9999

10.0 1.000 −1.0000 0.0003 1.250 0.200 −1.0000

peaks emerge for larger R. Note that the intermediate regime corresponds to the situation for
which the bare bandwidth W = 4|t| of the single-particle states fulfils the condition W ∼ U ,
i.e. the electronic system switches from the weak- to the rather strong-correlation regime,
corresponding to the delocalization–localization crossover of the Mott–Hubbard type taking
place. For one electron per atom the lower energy manifold is filled with electrons, whereas
the upper is empty. The presence of the incoherent spectrum for R ≈ 3–5a0 also seems to
represent a universal feature, as it also appears for larger values of N .

4.4. Slater versus Gaussian trial basis

We now compare the results obtained within EDABI when either the adjustable Slater or
the STO-3G functions are used. Probably, most interesting is to compare the results for the
Hubbard model with intersite Coulomb interactions taken in the Hartree–Fock approximation
(only then are the results for the Slater 1s-like basis energetically stable. In table 9 we list
the results for the Slater basis containing both EG and microscopic parameters for a ring of
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Table 10. The same as in table 9, calculated in the Gaussian-type STO-3G basis.

R/a0 αmina0 εeff
a t U K EG/N

1.5 1.309 0.1311 −0.8643 2.002 1.154 −0.5684
2.0 1.205 −0.5342 −0.4595 1.718 0.908 −0.8154
2.5 1.120 −0.7893 −0.2750 1.530 0.750 −0.9139
3.0 1.067 −0.8975 −0.1776 1.412 0.639 −0.9567
3.5 1.038 −0.9465 −0.1197 1.342 0.558 −0.9756
4.0 1.020 −0.9698 −0.0820 1.299 0.494 −0.9841
4.5 1.013 −0.9812 −0.0562 1.276 0.442 −0.9881
5.0 1.005 −0.9868 −0.0382 1.260 0.399 −0.9901
6.0 1.003 −0.9908 −0.0170 1.251 0.333 −0.9914
7.0 1.000 −0.9915 −0.0072 1.247 0.286 −0.9917
8.0 1.000 −0.9917 −0.0027 1.246 0.250 −0.9917

10.0 1.000 −0.9917 −0.0003 1.246 0.200 −0.9917

Table 11. The same as in table 9, calculated in the Gaussian-type STO-3G basis, with the inclusion
of the long-range Coulomb interactions.

a/a0 αmina0 εeff
a f t U K EG/N

1.5 1.322 0.1340 −0.8684 2.014 1.156 −0.7691
2.0 1.208 −0.5338 −0.4603 1.721 0.909 −0.9377
2.5 1.119 −0.7894 −0.2748 1.528 0.749 −0.9824
3.0 1.063 −0.8977 −0.1770 1.407 0.639 −0.9924
3.5 1.030 −0.9466 −0.1192 1.334 0.557 −0.9932
4.0 1.011 −0.9697 −0.0817 1.288 0.493 −0.9922
4.5 1.006 −0.9812 −0.0562 1.269 0.442 −0.9917
5.0 1.006 −0.9868 −0.0382 1.260 0.399 −0.9915
6.0 1.002 −0.9908 −0.0170 1.250 0.333 −0.9917
7.0 1.000 −0.9915 −0.0072 1.247 0.286 −0.9917
8.0 1.000 −0.9917 −0.0027 1.246 0.250 −0.9917

10.0 1.000 −0.9917 −0.0003 1.246 0.200 −0.9917

N = 10 atoms. The same for the case of the STO-3G basis is shown in table 10. One sees that
the Gaussian basis provides a lower value of EG. This is because in the Slater case we have
neglected three- and four-site interactions in the atomic basis, that represents a rather crude
approximation. In contrast, the results for EG obtained for the STO-3G basis for N = 10
atoms are very close (within 10−2 Ryd) to those obtained for an exact solution for an infinite
chain [25] and the values of the microscopic parameters within 10−3 [23]. Because of the good
accuracy of the results for the Gaussian basis we have also provided in table 11 the results
for the chain of N = 10 atoms when the long-range parts of the Coulomb interactions ∼Ki j

are included. These results provide the range of variation of the microscopic parameters when
compared to either H2 (cf table 2) or the U1 value for the He atom (cf table 3).

4.5. The role of boundary conditions: parity effects

It is believed that system properties in the thermodynamic limit (N → ∞) are the same
regardless of the boundary conditions used. This claim has been tested on many model systems.
However, for finite clusters the boundary conditions are crucial. For the chains studied here
when N = 4n + 2 (where n is a natural number) the periodic boundary conditions (PBCs) are
used, whereas for N = 4n the antiperiodic boundary conditions (ABCs) lead to a lower-energy
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state. Namely, the terminal-atomic annihilation operators should be defined as follows:

aN+1,σ → a1σ for PBC,

aN+1,σ → −a1σ for ABC.
(77)

Therefore, the terminal hopping term involving the end atoms changes sign for ABC, while the
interaction terms ∼ni↑ni↓, ni n j and Si ·S j remain unaltered. Obviously, the periodic boundary
conditions are appropriate for any N when we have a ring geometry. The situation becomes
more involved when N is an odd number. Namely, we write down the Hamiltonian (68) in the
form

H = εeff
a

∑
iσ

niσ + t
∑

jσ

e−i�/N a†
jσ a j+1σ + U

∑
i

ni↑ni↓ +
∑
i< j

Ki jδniδn j , (78)

where � is the fictitious (dimensionless) flux through the ring. One can show that the unitary
transformation c jσ → e−i�/N c jσ allows for accumulation of a complex phase factor in the
terminal hopping term, which then takes the form t (e−i�a†

Nσ a1σ + h.c.), and this can be
regarded as the generalized boundary condition aN+1σ → ei�/N a1σ . We do not distinguish
between the system with a fictitious flux and the generalized boundary conditions. The presence
of the flux can be regarded as an accumulation of the Berry phase during the motion of an
individual electron in the milieu of all other electrons. With such an interpretation the boundary
conditions also apply to a linear chain.

The electron momentum for nanochains with such boundary conditions is displayed in
figure 23. The discrete momenta, corresponding to the solution of the single-particle part of
(78) for a finite N , are given by

kn = 2πn − �

N
, 0 � n � N. (79)

The optimal BCs, corresponding to the minimal ground-state energy EG, with respect to �, are
realized for � = 0 when N = 6, 10, 14, . . . (periodic BCs), � = π when N = 4, 8, 12, . . .

(antiperiodic BCs), and � = π/2, 3/2π when N is odd. A basic analysis of equation (78)
shows that, for the optimal BCs, the Fermi momentum value kF = π/(2R) is never reached
for even N , whereas for odd N it happens for a single value of n. This circumstance has an
important implication for the nanochain electronic structure; however, it almost does not affect
its transport properties, as discussed below. The exact meaning of the averaging procedure
when drawing figure 23 is elaborated elsewhere. Analogously, the effect of BCs on the spin–
spin correlation function 〈Si · S j 〉 is also touched upon there.

An explicit form of the dispersion relation derived from the spectral density functions with
inclusion of the generalized boundary conditions is shown in figure 22. We see again that the
spin splitting is present. Also, one can see the difference between either the dispersion relation
for noninteracting particles or with that calculated in the Hartree–Fock approximation for the
Slater antiferromagnetic chain.

5. Transport in nanosystems

In this section we complement the discussion of nanochains by providing the values of Drude
weight (charge stiffness) and optical gap. We also show how the EDABI method can be used
to calculate the conductance of an open system: a quantum dot attached to the leads.

5.1. Drude weight for nanochains

The real part of the optical conductivity at zero temperature is determined by the corresponding
real part of the linear response to the applied electric field [26], and can be written as
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Figure 22. Spectral-density-peak positions for the nanochain of N = 10 (left panel) and N = 11
(right panel) atoms with generalized boundary conditions. The Hartree–Fock (solid line) and
noninteracting system (dashed line) dispersion relations are shown for comparison.

σ(ω) = Dδ(ω) + σreg(ω), where the regular part is

σreg(ω) = π

N

∑
n �=0

∣∣〈�n| jp |�0〉
∣∣2

En − E0
δ (ω − (En − E0)) , (80)

whereas the Drude weight (the charge stiffness) D is defined by

D = − π

N
〈�0| T |�0〉 − 2π

N

∑
n �=0

∣∣〈�n| jp |�0〉
∣∣2

En − E0
, (81)

where the kinetic-energy term T is the same as the second term in equation (78), and the
diamagnetic current operator is defined as usual: jp = it

∑
jσ (a†

jσ a j+1σ −h.c.). Here the states
|�n〉 in equations (80) and (81) are the eigenstates of the Hamiltonian (78) corresponding to the
eigenenergies En , again with boundary conditions which minimize the ground-state energy for
a given system size N (see the previous section). We calculate matrix elements 〈�n| jp |�0〉
numerically by adapting the method developed by Dagotto [27], which is stable for an even
number of electrons only. Namely, we diagonalize the Hamiltonian (78) in the Fock space
with the help of the Davidson technique [28], and then repeat the procedure starting from a
specially prepared initial state jp |�0〉. Replacing the Lanczos scheme, utilized in [27], by the
Davidson one provides an excellent accuracy for either even or odd number of electrons. The
evolution of Drude weight with N and R is shown in figure 24. In the half-filled case Ne = N
(cf figure 24(a)) Drude weight gradually decreases with N , as we have shown for even N [29].
The most interesting feature of these results is that the curves for odd N fit smoothly between
those for even N , with very weak parity effect, totally incomparable with that present in the
charge gap and electron momentum distribution [30]. This observation can be understood when
we take into account that the Drude weight defined by equation (81) is the integral quantity,
involving the summation over all the excited states of the Hamiltonian equation (78), so it
cannot be determined only by the electronic structure near the Fermi points, particularly for a
small system.
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Figure 23. Electron momentum distribution for chains of N = 8–13 atoms: (a) datapoints for
optimal boundary conditions (BCs) and the sample n(k) curves averaged over BCs (solid lines);
(b) the original n(kq(φ)) functions used for the averaging.

The parity effect on Drude weight disappears for the system with a single hole (Ne =
N − 1, cf figure 24(b)), in which the magnetic frustration is absent. For this case, the Drude
weight evolution with R is very interesting. In the weak-correlation range (R/a0 � 2) the chain
shows a highly conducting behaviour for each N . Next, in the intermediate range (R/a0 = 4–
5) the Drude weight decreases rapidly with N , indicating an insulating (Mott–Hubbard) state
in the large-N limit. In the strongly correlated range (R/a0 ∼ 10) the Drude weight again
approaches its maximal value D = 1. Such a behaviour can be explained when we analyse the
situation in two steps. First, for low values of R, the bandwidth-to-interaction ratio is small, and
the system with a single hole does not differ significantly from a half-filled one. This is why in
both cases Drude weight decreases gradually with both N and R, as the tunnelling amplitude
through the barrier of a finite width. Second, for the largest values of R, the system can be
described by an effective t–J model [31] with a coupling constant J = 4t2/(U − K ) � |t|
(where K ≡ K j, j+1 denotes the nearest neighbour Coulomb repulsion), which corresponds to
an asymptotically free hole motion. Then, it become clear that in the intermediate range the
Drude weight has to be suppressed, which can be interpreted in terms of a partially localized
spin-ordered state. It would be very interesting to test experimentally this result, possibly for a
mesoscopic atomic ring.
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The smooth behaviour of the system transport properties with N is illustrated in figure 25
on the example of another relevant quantity, the optical gap �Eopt = Ei − E0 (where Ei is the
energy lowest-lying excited level |�i〉, for which 〈�i | jp|�0〉 �= 0). Again, adding a single hole
totally removes the weak parity effect (not shown). The large-R behaviour of �Eopt could be
explained by the value for an insulating limit �Eopt ≈ U − K , whereas for small R we have a
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Figure 26. Diatomic molecule as a double quantum dot.

strong N dependence similar to those observed for D. The latter shows that the contribution of
the state |�i〉 to the sum (81) is dominant for such a partly localized quantum nanoliquid [29].

5.2. H2 molecule as a quantum dot

We have recently shown that the EDABI method is useful to investigate the zero-temperature
conductance of a diatomic molecule, modelled as a correlated double quantum dot attached
to noninteracting leads [4]. This became possible when utilizing the Rejec–Ramšak formulae,
relating the linear-response conductance to the ground-state energy dependence on magnetic
flux [32]. Here we complement the discussion with the stability analysis showing that large
coupling between molecule and the leads may provide the possibility for interatomic distance
manipulation in an experiment.

We start with the Hamiltonian, which is a generalization of the Anderson impurity
model [33], and can be written as

H = HL + VL + HC + VR + HR, (82)

where HC models the central region, HL (R) describes the left (right) lead, and VL (R) is the
coupling between the lead and the central region. Both HL (R) and VL (R) terms have a tight-
binding form, with the hopping t and the tunnelling amplitude V

HL (R) = t
∑

j �=L (R),σ

(a†
jσa j+1,σ + h.c.), (83)

VL (R) = V
∑

σ

(a†
L (R)σ a1(2)σ + h.c.), (84)

as depicted schematically in figure 26. The index j = L (R) corresponds to the last atom of
the left (right) lead. The central-region term HC is a version of Hamiltonian (68) for two atoms,
and describes a double quantum dot with electron–electron interaction

HC = (εa − eVG)
∑
j=1,2

ni − t ′ ∑
σ=↑,↓

(a†
1σ a2σ + h.c.) + U

∑
j=1,2

ni↑ni↓ + K n1n2 + (Ze)2/R,

(85)

where εa is atomic energy, VG is an external gate voltage, t ′ is the internal hopping integral, U
and K represent the intra- and inter-site Coulomb interactions, respectively, and the last term
describes the Coulomb repulsion of the two ions at the distance R. Here we put Z = 1 and
calculate all the parameters εa, t ′, U , and K as the Slater integrals [34] for 1s-like hydrogenic
orbitals �1s(r) = √

α3/π exp(−α|r|), where α−1 is the orbital size (cf figure 26). The
parameter α is optimized to get a minimal ground-state energy for the whole system described
by the Hamiltonian (82). Thus, following the idea of the EDABI method [29], we reduce the
number of physical parameters of the problem to just three: the interatomic distance R, the gate
voltage VG, and the lead–molecule coupling V (we put the lead hopping t = 1 Ryd = 13.6 eV
to work in the wide-bandwidth limit).
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Figure 27. Zero-temperature conductance of the system in figure 26 as a function of the gate voltage
VG and interatomic distance R. 1s orbital size α−1 is optimized variationally. The lead parameters
are t = 1 Ryd and V = 0.5t .

We discuss now the molecule conductivity calculated from the Rejec–Ramšak two-point
formula [32]:

G = G0 sin2 π[E(π) − E(0)]/2�, (86)

where G0 = 2e2/h̄ is the conductance quantum, � = 1/Nρ(εF) is the average level spacing at
Fermi energy, determined by the density of states in an infinite lead ρ(εF), and E(π) and
E(0) are the ground-state energies of the system with periodic and antiperiodic boundary
conditions, respectively. E(φ) is calculated for φ = 0, π within the Rejec–Ramšak variational
method [32], complemented by the inverse orbital size α optimization, as mentioned above.
We use typically N = 102–103 sites to reach convergence.

In figure 27 we show the conductivity for V = 0.5t , and different values of the interatomic
distance R. The conductance spectrum evolves from the situation of well separated peaks
corresponding to the independent filling of bonding and antibonding molecular orbitals (R �
2a0, where a0 is the Bohr radius), to the single peak in the intermediate range (R ≈ 3a0), which
decays when t ′ � V for large R.

Probably, the most interesting feature of the conductance depicted in figure 27 is their
strong asymmetry for small R. Namely, the low-VG conductance peak, corresponding to
the system filling 〈n1 + n2〉 ≈ 1 (one hole) is significantly wider than the high-VG peak
for 〈n1 + n2〉 ≈ 3 (one extra electron). Such a particle–hole symmetry breaking is the
novel feature, observed when including the correlation-induced basis optimization, and absent
in the parametrized-model approach [32, 35]. It is also a new feature of a nanosystem,
not observed in mesoscopic double quantum dots [36], where the particle–hole symmetry
holds.

The relation between the observed asymmetry, basis renormalization, and electron
correlations can be clarified as follows. First, one can observe that the optimal values of
the variational parameter α, provided in figure 28(a), decrease dramatically for high VG,
corresponding to the overdoped situation 〈n1 + n2〉 > 2 (cf figure 28(b)). This is because
the system minimizes the energy of double occupancies, which is of the order U ∼ α [34].
Then, we focus on an small R limit, in which the good separation of molecular orbitals allows
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Figure 28. The optimized inverse inverse orbital size (a) and average central region occupancy
(b) for the diatomic molecule attached to noninteracting leads characterized by the parameters
t = 1 Ryd and V = 0.5t .

Table 12. The binding energy �E and the bond length Rmin for different couplings to the lead V .
The conductance at the energy minimum is also provided.

V/t �E Rmin/a0 GVG=0
min /G0

0.0 −0.296 1.43 0
0.1 −0.293 1.44 10−4

0.2 −0.282 1.46 0.004
0.3 −0.180 1.52 0.023
0.4 −0.040 1.59 0.093
0.5 +0.074 1.93 0.422

one to approximate the expression for a single impurity at zero temperature [37]

G = G0 sin2(π〈nk〉/2), (87)

where 〈nk〉 is the bonding (k = 0) or antibonding (k = π ) orbital occupancy. Expanding
around the maximum we have G(VG) − G(V ∗,k

G ) ≈ −G0(χcπ/2)2(VG − V ∗,k
G ), where V ∗,k

G
(k = 0, π ) is the low/high voltage peak position and χc is the charge susceptibility, which
may be approximated as χc ≈ ∂〈n1 + n2〉/∂VG, since the orbitals are filled separately. Values
of the latter derivative read from figure 28(b) around the low and high voltage peak positions
(〈n1 + n2〉 ≈ 1 and ≈3, respectively) provides a clear asymmetry. Moreover, the expansion
of G(VG) allows one to roughly estimate the peak width as �VG ≈ χ−1

c ≈ (U + K )/2 ∼
α, which provides an indirect correspondence between the spectrum asymmetry and basis
renormalization.

The practical possibility of the conductance measurement involving atom manipulation
(changing of R) was also explored in terms of the system stability. Namely, the binding energies
�E ≡ ERmin − E∞ (where Rmin is the bond length), listed in table 12, shows that the system
becomes metastable around V = 0.5t (�E > 0 indicates a local energy minimum). Therefore,
the binding of the atoms to the lead becomes stronger than interaction between the atoms, that
may allow individual atom manipulation.

We would like to stress here that ab initio analysis have never been performed for the open
system with strong electron correlation. Apart from simplifying the discussion (the model
parameters are calculated as a function of interatomic distance), such an approach leads to new
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physical effects, since the particle–hole symmetry is broken, as exemplified on the example of
the conductivity calculations.

6. Concluding remarks

In this paper we have provided a detailed discussion of the method based on the diagonalization
in the Fock space, when combined with with an ab initio adjustment of single-particle
wavefunctions in the interacting state of the N-particle system (the EDABI method). The
method can be improved upon by systematically increasing the number of wavefunctions in the
basis [wi(r)] when defining the field operator for the system (thus enriching the model). We
have illustrated our method with the discussion of several nanoscopic systems ranging from
atoms to nanochains and quantum dots.

The method is useful when the exact solution of a model is available in the Fock space.
Such a situation also occurs for the one-dimensional atomic chain represented by the Lieb–Wu
solution of the Hubbard model [25]. In this situation, exact Wannier or Bloch wavefunctions
can be constructed. Other applications such as solving the magnetic impurity in a nonmetallic
environment are also possible, although not carried out explicitly as yet.

The importance of our approach is, among other things, in showing explicitly that the
concept of the statistical distribution of particles with quasimomentum, as a good quantum
number, is feasible for a relatively small interatomic distances. This means that the
corresponding N-electron states form a quantum nanoliquid for not-too-large inter-distance in
nanowires. In connection with this, in replying to the question of how small a piece of metal can
be, we can say that the nanoliquid exhibits metallic conductivity for eV � �E(N, R), where V
is the voltage applied to the system and �E(N, R) is the energy difference between the highest
occupied and the lowest unoccupied state, i.e. the momentum is a good quantum number then.
For an intermediate interatomic distace, we have a gradual transition to a Mott insulator, above
which the monoatomic (quantum) nanowire is useless for electronic applications.
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A C Hewson and V Zlatić (Dordrecht: Kluwer Academic) pp 257–68
[3] Slater J C 1963 Quantum Theory of Molecules and Solids vol 1 (New York: McGraw-Hill)
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